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ABSTRACT

The dynamics of viscous fluid transmission lines have been in-
vestigated with emphasis being placed upon topics of interest in
both fluid systems engineering and acoustic fields.

An exact solution df the first-order Navier-Stokes equation was
obtained to describe the dynamics of a viscous, compressible liquid
in closed conduits. This solution demonstrated the existence of an
infinite set of viscous modes of propagation. Calculations were
made of the spatial attenuation factor and phase velocity for sev-
eral modes for both rigid and elastic flexible conduit walls, Also
calculated were the velocity profiles near an oscillating piston
and subsequently the state of shear stress near the piston.

Engineering models, based upon approximations of the zeroth
mode, were developed and experimental studies were made of the fre-
quency response and transient response of a viscous fluid transmission
line.

In a viscous fluid transmission line, there exists an infinite
set of higher order wviscous modes of propagation. These modes are
generated at the line ends or at points of discontinuity and exist
at all frequencies. Each higher mode possesses a relative cutoff
frequency below which the attenuation is very great. An experi-
mental study, using a flow visualization technique to observe the

state of shear stress, verified the existence of these modes.
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The transfer equation model discussed in this work has been

experimentally verified over the range of parameters

vL

'0.00001 < 2 < 0.02
R Coro
0.5 < <& < i0.0.
(o]

The tapered-lumped model developed was found to be of good utility

in modeling a transmission line when part of a complex system.
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CHAPTER I
INTRODUCTION TO THE PROBLEM

Introduction

The increased sophistication of present-day and proposed fluid
systems has demanded that the engineer employ in¢reasingly complex
methods of analysis for studying these systems. This is indeed true
for the case of non-steady flows in fluid conduits. To the practicing
engineer, the presently available procedures for analyzing fluid trans-
mission lines may present one of the following problems:

1. Perplexing mathematical detail when dealing with

"exact' or distributed parameter models.

2. All problems, except the most elementary, demand
extensive use of the digital computer for both
distributed model and graphical methods.

3. Oversimplified lumped parameter models lead to in-
adequate answers for many typical problems.

The analyst thus finds that, except for a few simple and sfecial—
ized problems, it is very difficult to apprcach "exact answers'. These
problems do not, in any case, lessen the need for adequate transmission
line models useful for the study of everyday fluid systems.

A typical system may contain many components such as pumps,

valves, actuators, reservoirs, motors, etc., generally connected



together in some manner by fluid lines. A complete analysis of such a
vsystem must involve not only the éomponents but also the fluid lines.
This is particularly true for unsteady conditions where the effects of
the fluid lines have, in some cases, caused otherwise well-designed
systems to be inoperable.

In general, the area of study associated with the flow of fluids
through conduits is called "Conduit Dynamics". A rigorous application
of Conduit Dynamics to the study of a fluid line involves a complete
study of the fluid itself plus a study of the effect which the pipe or
conduit has upon the fluid. For example, in meking computations in-
volving the effect of fluld compressibility, large errors may occur if
the compressibility effect due to the elasticity of the pipe walls is

not included.
Lumped and Distributed Systems

The physical properties of all real systems are distributed with
respect to time and space. The extent or influence of this distributive
effect varies greatly, depending on the particular system being studied.
For the case of the fluid systems which will be of concern, this dis-
tributive effect may or may not need be considered. In general, those
physical systems which are described by relations involving distributed
parameters are called distributed parameter systems. The dynamical
equations for distributed systems are generally partial differential
equations. Those systems which do not involve distributed parameters
are called lumped parameter systems. The dynamical equations for

lumped systems are generally ordinary differential equations. If one



takes a distributed parameter system, averages the effect of the dis-
tributed parameter(s), and concentrates this average at some point,

then one has "lumped™ the system. The validity of approximating a dis-
tributed system by a lumped system or systems depends upon the operating
conditions of the system and also upon the manner in which the lumping

is performed.
Mathematical Description of the Problem

The exact description of the motion of a fluid for any type of
fluid mechanics problem necessarily involves the simultaneous solution
of the eéuatiops of change for the fluid. In mathematical terms, this
description includes: (a) a continuity equation expressing the conser-
vation of mass, (b) an eguation of motion expressing the conservation
of momentum, (¢) an energy equation expressing the conservation of
energy, and (d) one or more equations which relate the response of the
fluid to thermal and mechanical stresses (equations of state). In addi-
tion, it is necessary to prescribe the motion at the fluid boundary
which, for the problem dealt with here, means one needs a description of
the motion of the conduit walls. This may involve an additional set of
equations of change for the conduit itself.

An exact description, i.e., an exact solution of the gove?ning
equations, is nearly impossible. However, by means of various simplify-
ing assumptions, it is possible to arrive at solutions which yield
rather good quantitative descriptions of the system being analyzed. In
many cases, these simplifying assumptions are questionable. By means of
the discussions which follow, an effort will be made to present, in an

organized manner, the work which has been accomplished by previous



investigators. Indications will be made, where possible, of the appli-
cation and limitation of the ideas.

If one adopts an Eulerian point of view, that is, if one defines
the fluid motion relative to a fixed spatial coordinate system, then the

fluid equations of change may be written as follows (1).

(a) Continuity Equation

A mathematical statement of the conservation of mass for a fluid is

~:§—E+Vo(pf)=o (1.1)

where P and v are, respectively, the instantaneous fluid density and -

vector velocity in terms of the spatial coordinate location and time.

(b) Equation of Motion

The conservation of momentum for the fluild is expressed by the

force equation

VU

i + (v.vh?} = pF -VP + (pe+FMV(V-T)
“AVx(KT) + (V.F) YU+ 2 (Qu- V) T

+ VUx (Vx V). (1.2)

In this equation,

F = vector body force per unit mass ’
p E total fluld pressure

B = shear viscosity
p' = dilitational viscosity

bulk viscosity

=
o
i}



where each 1s generally a function of the spatial coordinate position

and time.

(¢) The Energy Equation
The energy equation may be written in the form
e3¢y BT _ DP _ ud-v.g
Dt Dt
where & is the dissipation function (2,3) and g is the vector heat

flux.

(d) Equation of State of Fluid

The equation of state of a fluid is the functional relationship be-
tween its pressure, density and temperature (i.e., its state variables).
For a liquid, it is often written as

dp:)ﬁieﬁ

where K is the bulk modulus of elasticity of the liquid.

Simplifying the Equations of Change

The problem of simplifying a set of equations of change is some~
times rather difficult from the standpoint that one needs to know some=-
thing about the answer before the significance of various terms.or
variables being simplified or eliminated can be judged. Often one can
neglect what seem to be minor terms and completely eliminate the possi-
bility of mathematically predicting some physical phenomena in the
process.

Previous studies of the dynamics of fluids in conduits have shown



the following trends:

1. Thermal effects appear negligible for liquids in many
cases but not for gases.

2., Except for extremely high frequencies, the bulk vis-
cosity may be neglected; however, it may be necessary
to account for time dependent shear viscoslity effects
(viscoelastic effects).

%, Nonlinear effects for acoustic type disturbances in
ligquids appear small or negligible.

With these trends in mind, the mathematical description will now
be simplified to a somewhat more tractable form, keeping in mind that,
principally, liquids are being dealt with in this study. The stipula-
tion of negligible thermal effects for a liquid eliminates the energy
equation as one of the describing relations, thus leaving the equation
of motion, the continuity equation and the state equation. If further,
it is assumed that the bulk viscosity is zero and that the shear and
dilitational viscosities are spatially independent, then the equation of

motion becomes

A 3F + 0] = pF - vppu{fvER)-mm Tt

which is the Navier-Stokes equation. The equations of change contain
nonlinearities; however, it has been indicated that such effects are
probably minor or negligible so the equations will now be linearized.

Assume



P=f+ A
=R+ B (1.4)

where sub-O denotes steady-state or time independent quantities (or at
least slowly varying with respect to sub-l quantities) and sub-1l denotes
.the first-order acoustic or disturbance quantities. Introducing Equa-
tions (1.4) into the continuity, motion and state equations, the desired
linearized or first-order equations of change (assuming no body force)

become

v, Y 9o —Z (1.5)
b 5o = -VR + UL VWT) - VU T
which will be called the first-order Navier-Stokes: equation,
o —_
5% -'-QD v.’t)'; :O (106)

for the first~order continuity equation, and
dﬂ = H _d.ﬂ (1.7)
B

for the ligquid state equation.
Equations (105), (1.6), and (1.7) are the first-order equations of
change for a compressible liquid (neglecting thermal effects) and will

be the basis of discussion for this treatise.
Scope of Treatise

The scope of this treatise on the dynamics of fluid transmission
lines may be summarized as follows:

1. Comprehensively examine and review all literature



One

pertinent to the dynamics of fluid flow in closed
conduits.

Obtain an exact solution of the first-order egqua-

tions of change to describe the dynamics of a viscous,
compressible ligquid in a closed conduit.

Experimentally determine the validity of the exact
solution.

Develop a practical and accurate approximate model of a
fluid transmission line which should be suitable for
uge by the practicing engineer,

of the objectives of the writer in this work is to bridge some

of the gaps between the areas of fluid systems engineering and acoustics

which have recently been growing more closely allied, primarily due to

the rapldly developing area of fluidics.

For

Computer Program Listings

the convenience of the reader, all pertinent computer programs

used in performing the calculations for this work have been listed in

Appendix C.



CHAPTER TI
STATE OF THE ART
Introduction

Literature related to the subject of this treatise cuts across the
boundaries of many fascinating disciplines. These include electrical
transmission line theory, electromagnetic waveguldes, acoustic wave-
gulides, loudspeaker theory and the wave mechanics of elastic solids.

To attempt a complete discussion of material from all of these areas
would be completely beyond the scope of this work. However, some of

the more significant results which pertain to the description of liquids

as the working medium will be discussed.
Distributed Parameter Models

In Chapter I, it was stated that the exact description of a fluid
conduit involves the simultaneous solution of the equations of change
for the fluid. Studies of some previous investigators which are based
upon solutions of some reduced form of Equations (1.5), (1.6), and

(1.7) will now be given.

Frictionless Model

The starting point for studies of conduit dynamics is the one-

dimensional wave equation which was first derived by d'Alembert in about
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1750 in connection with his studies of vibrating strings. Joukowsky
(4) and Allievi (5) are generally credited as first associating wave
phenomena with water hammer problems in order that studies of the wave
equation could be used in explaining pressure trausients in conduits.
The wave equation for a compressible liquid is derivable from Equations
(1.5), (1.6), and (1.7) if one assumes that the viscous effects are

negligible. The result is

2
Y
o s = Lo Vi (2.1)
ot
where c, is the isentropic speed of sound in the fluld and is given, for
a fluid, by
X
/Co =v o (2.2)
-]

v represents the fluid disturbance velocity in the direction of propaga-
tion. Solutions to Equation (2.1) predict sinusoidal pressure and
velocity disturbances propagating unattenuvated with respect to space and
time with a velocity ¢ . If Equation (2.1) is solved for the case of a
suddenly closed valve on one end of a line with a constant pressure
reservoir at the other end, Figure 2.la, then the disturbance pressure

will be of the form

09}

- ‘ﬁ‘_):l).TDCo_ (2.3)

) = b, 2o Vo () ) (2) swdmle (an-1)¢ 3
N=

where v, is the initial mean velocity in the pipe before flow stoppage.

Equation (2.3) is the mathematical expression for a square wave with

period (4L/bo), see Figure 2.1b. Now examine the physical chain of

events which result in this pressure square wave. At the instant of
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valve closure, the fluid at z = L is instantly stopped and the kinetic
energy of the fluid is converted instantaneously (no friction) to poten-
tial energy (pressure). This positive préssure wave propagates toward
%z = 0 with velocity Cq and reflects back to z = L with zero pressure,
see Figure 2.1c. The pressure wave then becomes negative and propagates
again to z = O where it reflects with zero pressure back again to z = L,
thus completing one cycle of the pressure wave.

It is evident from this discussion that the conduit of Figure 2.1
has a characteristic "natural®™ frequency of oscillation fc = co/hL. A
critical analysis of Equation (2.3), however, shows that this particular
disturbance actually consists of an infinite number of discrete charaé—
teristic frequencies fc = co(2n-1)/ﬁL, In general, one may say that a
conduit will have an infinite number of characteristic frequencies,
whose values depend not only upon Cy and L, but also upon the end condi-
tions for the conduit. When one excites this system with some form of
time variant non-sinusoidal disturbance, the system response will be the
sum of the response of each characteristic frequency. The extent to
which a given characteristic frequency will be "excited" depends on the
type of disturbance. In‘general, the "sharper" the disturbance, the
greater will be the extent to which the high frequency terms are ex-
cited. It is important to realize that the above results are ?ery
idealized and include neither the effects of friction or of pipe wall
elasticity (these topics will be discussed later on). The results,
however, indicate the upper limit of amplitude for a given disturbance.
Extensive treatments of the application of this simple theory to prac-

tical problems may be found in references (6, 7, 8). These
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applications, in general, involve a graphical or numerical solution of

the wave equation.

Friction Effects

When researchers (e.g., 9) performed experiments on models demon-
* strating water hammer they found considerable discrepancy between the
simple plane wave theory and actual results. They found that when
sudden flow changes were effected, the resulting pressure transients

changed shape with time similar to the diagram in Figure 2.2.

-0

/N

Figure 2.2. Actual Pressure Versus Time Plot for Suddenly
Closed Valve

It may be seen that, in the actual case, the sharp corners of the
pressure trace are being "rounded off" and the amplitude is decayling
with time. This phenomena results from dispersive and dissipative

effects which are a consequence of viscosity, pipe wall effects, etc.
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In general, they result from friction effects. It is interesting to
note that the greatest dispersion and dissipation occur on the high
frequency terms which are those terms responsible for the sharp corners
of the pressure trace. To account for all dispersive and dissipative
effects would require an exact solution of the governing equations.
-However, past researchers have obtained useful results by means of ap-

proximate solutions.

Plane Wave Viscous Model

It was demonstrated by Stokes that plane or unbounded waves do not
satisfy the simple one-dimensional wave equation, but rather, due to
viscosity, must satisfy

IV _ %V LY vV (2.4)

Y e T

Equation (2.4) may be obtained from Equations (1.5), (L.6), and (1.7) by
assuming one-dimensional effects only. Solutions to Equation (2.4) may

be represented by

1z +iwt
V=" € - (2.5)

where Y is a complex constant called the propagation constant or propa-

gation factor and is given, in general by

'{= l{y-""{"{c.’ '(206)

The quantity Yr is the spatial attenuation factor since the term einZ

represents the spatial decay or attenuation of the wave. The quantity
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w/Yc is called the phase velocity and is the actual velocity of propaga-
tion of the disturbance. In general, the phase velocity does not equal

¢, The value of Y for the solution given in Equation (2.5) is

,/= A . (2.7)
e
W represents the angular frequency of the disturbance.

Solutions to Equation (2.4) have been obtained by some researchers
in an effort to account for dispersion and dissipation effects in water
hammer (10). These solutions, however, greatly underestimate the vis-
cous effect because Equation (2.4) accounts for shear only in the
direction of propagation (the z direction). Much greater viscous ef-
fects are acting in the radial direction due to the fact that the fluid
velocity must go to zero at the pipe wall. One must conclude then that
solutions to Equation (2.4) will not adequately describe the viscous

effects in conduit dynamics.

Linear Resistance Model

The approach that a great number of researchers have used is to
modify Equation (1.5) by substituting in place of the viscosity depend-
ent terms a friction term which is proportional to the velocity (6, 7

9, 11, 12, 13, 14, 15). The resulting equation of motion is

AV = - 1 EZE -V
It 6, 32 R

(2.8)

Ry is a resistance or friction coefficient often given by the laminar

flow resistance value, or
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Rl = % 3 (2.9)

r, being the pipe radius. When Equation (2.8) is solved simultaneously
with the continuity equation and the equation of state, the same solu-

tion as in Equation (2.5) is obtained, except Y now has the value

- .a:_cng__ (2.10)
1= 2Vt

If the solution to Equation (2.8) is obtained for the case of a

suddenly closed valve, the pressure versus time plot at the valve will

look similar to Figure 2.3%.

1 —
T
L\\\\ T —

Figure 2.3. Pressure for Suddenly Closed Valve From
Linear Friction Model

Although this linear friction model does not give the exact answer,

especially over a wide frequency range, it has good utility when
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experimental values of By may be determined and when the frequency range

is limited.

Two-Dimensional Viscous Model-Longitudinal Mode Only

A model reported in the literature (16, 17) which more exactly
‘describes the first-order viscous effects for the longitudinal mode of
vibration only is a result of the solution of the following reduced form

of the equation of motion

v 9Ff v, 4 Qv'z,
Qoa? = "a_aJ‘/“{'éT""'?a—‘f‘ (2.11)
The resulting propagation factor is
) (£2) (2.12)
{1_ 2 Ji(£%) }"Q
where EYB~3B(§YZ)
£= - 22 (2.13)

and where Jl(iro) and JO(ErO) are, respectively, the first and zeroth
order Bessel functions (18) of the argument Ero. Brown (16) has ob-
tained the pressure history for the case of a suddenly closed valve
using the solution to Equation (2.11). His results have much éhe same
general shape as that of the experimental results of other authors, but
the results are iInconclusive since no supporting experimental results
were included with the theoretical predictions. It can be concluded,
however, that Equation (2.11) is a better representation of the true

physical situation than the models previously discussed. From the
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standpoint of frequency response characteristics as reported by
Oldenberger and Goodson (12), this theory‘follows very closely the ex-
perimental results. .Brown (16) and two other authors (19, 20) have
solved Equation (2.11) for a fluid in which the héat transfer may not
be neglected, thus it must be solved simultaneously with the energy,

.continuity and state equations. This results in a propagation factor

Vo
14 ('/11) 237(6‘62

1= Lo | y_ _23(e%) (1)
EYS Ju(BWR)
where now
gi= - £% o3

(2.15)

and 9 is the Prandtl number (2) and Y* is the ratio of specific heats
for the fluid. This model has not been experimentally verified by re-
searchers so its validity must be regarded, at this time, as

undetermined.

Fluid Transmission Line Concept

So far, only the discussion of time domain solutions of the equa~-
tions have been given. If one were to begin the exact study of a fiuid
system in which several components were involved, then the time domain
approach would be exceedingly difficult. A useful and simple approach
when dealing with the frequency analysis of fluid conduits (or any
fluid component) is that of the fluid transmission line (7, 12, 21).
Consider the fluid line to be representable as shown in Figure 2.4 as a

four-terminal system. If one solves the system equations for a conduit
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Vi Va,
L ————— ]

FLUID CONDUIT

—— g

X=X X= X

Figure 2.4. Four-Terminal Representation of Fluid Conduit

in the Laplace transform domain, then a rather simple set of equations

relating the four transformed variables is obtained, thus

Res) = P coshL- Z Vi) suwhv/L (2.16)

and

Vote) « Vie) coshL- %‘S) saohyL . (2.17)

[~

In Equations (2.16) and (2.17), V1 (s), V,(s), P;(s), and P,(s) represent
the Laplace transform of the respective time functions and s is the

Lapiace variable. Also,

L= Xe- X | (2.18)

Zew L , (2.19)
S

Ze is called the characteristic impedance of the conduit. The ¥ which
appears in Equations (2.16), (2.17), and (2.19) is identical with pre-

vious Y's except that here iw = s, the Laplace variable. The value of
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Y, of course, depends upon the model. It is important to note that this
form of the transfer equations is the same for all of the previous
models discussed, only the value of Y varies. The transfer equations
for the four-terminal representation of Figure 2.4 will change, in
general, when there is motion of the pipe wall and when we Include the
‘higher modes of propagation. Note also that the fluid velocities repre-
sented here are average values; that 1s, they have been integrated over
the cross-sectionj thus, they are only dependent on time and the axial
coordinate.

The utility of valid transfer equations in the frequency analysis of
a conduit system cannot be over-emphasized. If four-terminal transfér
equations can be written for each element of a fluid system, then the
total system performance may be analyzed by combining the equations into
a new set of transfer equations which represent the entire system. Sup-
pose, for example, that two components of a fluld system are arranged in

series as shown in Figure 2.5.

Vi Vo Vs_
*~— o ———
| 2
tp| 1 pz 1 p3
-——— ° —

Figure 2.5. 8Series Arrangement of Two Fluid
Components
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Suppose that the transfer equations for element 1 may be expressed in

the form

ReE) = AS) RE) + B i)

and

Vo) = Ci(s) Rs)+ Dis) VGs),

Writing these equations in matrix form gives

R] [A B[P

il

w| &, ollv

In a similar manner, one may write for element 2,

P3 A’z Bz P)_

V3 c'z_ D?. V’L

Substitution of Equation (2.22) into (2.23) yields.

P3 A?_ Bz AI BI P|

V3 . C’). Dz CI Dl 1\/g

or, by matrix multiplication,

P3 (A\AI. + BZCl) (Aan + B?.Dt) R

V3 (AtC’L'\‘ C| D?_) (B|CZ+ IDIDZ)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)
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One might, for convenience, write

- o - - -

R As B.||P

v3 Cs D, V| (2.26)

e o e
b

so that, effectively, elements 1 and 2 have been combined into a new

element 3. The new element may be represented as shown in Figure 2.6.

v, Vs
T P
| 3
Rt"* '1p3

Figure 2.6. Combined Series Elements

Methods similar to this have been employed to great advantage in
the analysis of noise transmission in complex fluid system which in-
volve series and parallel elements (22). The matrix theory for four-
terminal elements has been worked out by Pipes (23) for various types of
arrangemenfs of the elements.

In general, the matrix method approach is ideally suited to fre-
quency analysis studies of a condult system. It allows very complex

systems to be analyzed easily with a digital computer.
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Lumped Models

Up to now, only distributed parameter models of conduit systems
have been discussed; Such models were found to be expressible in terms
of transfer relations which lend themselves well to frequency analysis.
In general, these distributed models are difficult to deal with in the

“time domain. This is a major handicap for many technically interesting
problems such as problems involving conduit systems which contain valves
closing or opening arbitrarily with time. In cases such as this, one
may want only the time response of the system. In terms of the distrib-
uted parameter models, this means that the transfer relations for the
system of interest must be transformed from the Laplace domain back
into the time domain, or that some numerical or graphical procedure must
be used to solve the system describing equations. The transformation of
the transfer relations is very formidable; on the other hand, the
graphical or numerical procedures are rather simple ways to analyze a
system but lack the degree of generality usually desired in system anal-
ysis. Due to these drawbacks in the application of the distributed
parameter models, lumped parameter approximations are often used in
conduit system analysis. These models also have drawbacks which must
be kept in mind. The major restriction which must be imposed on the
lumped modél of a distributed system is that it is valid only at low
frequency. The method has been found to be valid, in most instances,
only if the frequencies involved are not greater than about one-eighth
of the first c¢ritical frequency of the lumped element. The exception to
this restriction would be a system which has sufficient damping so that

compressibility may be neglected. Now, examine some typical ways in
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which conduit systems are lumped; first, consider the basic lumped ele=-

ments, i.e., inertance, capacitance and resistance (7, 21, 24).

Fluid Inertance

Consider the fluid line shown in Figure 2.7. Assume that only the
.pressure and inertia forces are important and that compressibility may

be neglected.

v, ' ' V2
—— I —
I
p,’o Z M 'h)z
X =0 X =L

Figure 2.7. Lumped Model Inertance Element

Writing the equation ofvmotion for this case gives

P-P= QoLd L’g: (2.27)

where vi = vz = v since the flow is incompressible. The gquantity pOL
represents a fluid inertance. Before proceeding, it should be noted
that Equation (2.27) is often found in various other forms in the liter-

ature. It may be found also as

where q is the flow rate and A is the cross-sectional area. For this
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case, the fluid inertance is pOL/A. Another form of Equation (2.27) is

pp. Ldw_ 1 du
ﬂE_Agdt'I‘”di—f

where w is the weight flow rate. Notice that the inertance, I, is not
the same in each case. Notice alsc that these equations are valid only

for constant area lines.

Fluid Capacitance

Now consider a fluid line in which only compressibility effects are
important, i.e., inertia or inertance effects and resistance effects are
unimportant. With respect to Figure 2.8, applying the continuity and

state equations, one has, since p1 = pp; = P,

L dP dP .28
7)‘:—7)'7; H—R':Cv"d“_g. (22)

N, [P L w

Bl Cv —te

]

Figure 2.8. Lumped Model Capacitance
Element

Again, as was true for Equation (2.27), one could just as well have
written Equation (2.28) in terms of q or w, but the value of C would

also have been different; thus,
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q:n"%?_ =

<z
*s
|
O
\ N
£

and also

| _ P3AL 4P _ o, o7
wi- ¥ dtT Y4t

Fluid Resistance

Because of the large number of parameters which may affect the
fluid resistance, it becomes more difficult in this case to write a
valid theoretical relationship which holds for a wide range of flow and
pressure variations. The usual approach, therefore, is to treat fluid
resistance semi-empirically by defining the pressure drop due to re-

sistance between points 1 and 2 of a lumped resistive element as where

e
Pie ///E(/v/%—————--tpa

Figure 2.9. Lumped Model Resistive
Element

vy = v, = v and R(v) is an experimentally determined function of veloc-
ity. Of course, if the pressure and velocity are steady, then R(v) is
well known from information contained in standard fluid mechanics

textbooks. For the case of oscillating flow only (no net‘flow), one can
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get a good value for the resistance coefficient by considering a low

freqdency approximation of the two-dimensional viscous distributed

parameter model. i T Lo . BT AOr Y

Fundamental Lumped Model

Combining the three basic elements yields the fundamental represen-

tation of a lumped line. Combining Equations (2.27) and (2.28) and

ER—

"

)/" o
fo— o Vi) Y

Figure 2.10., Fundamental Representation of
Lumped ILine

considering also Equation (2.29), then one may write for the fundamental
A
representation

R-fom I $5 L Re) V2 (2:30)

dA
dt

v;—-v—a_ = C’u’ (2031)

Now, take the Laplace transformation of Equations (2.30) and (2.31),

thus
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PI(S)' P?.(S) = SI'U‘ %(5)-{- R(—U—) K(s) (2'32)

and
Vis) - ied= 8GR (s), (2.33)

Writing these last two equations in the standard transfer form gives,

R(s) = Rie) $4+SCv[sT+ Rcv)]z—VAs){Ls I+ Rcv)z

and

Vas)= Vis)- sGrR(s).

There are many possible ways of representing a conduit with lumped

elements other than the representation of Figure 2.10.

Equivalent Electrical Circuits

One motivation for using lumped models, other than simplicity, is
that they readily yield to simulation on an analog computer. Using a
pressure-voltage analogy, the electrical equivalent of the fundamental
lumped model becomes that shown in Figure 2.11. The values of Re, Le,
and Ce depend upon what is made to be the analog of electrical current.
Table I shows the analogous quantities for three possible analogs.
Other circuits which are often used in an effort to improve the

accuracy of representation are shown in Figure 2.12.



Figure 2.11.

TABLE I -

ELECTRICAL ANALOGS

Electrical Analogy for
Fundamental Lumped
Conduit With Friction

29

T REPRESENTATION

Figure 2.12.

Electrical | Voltage | Current| Resistance | Inductance | Capacitance
Quantity e i Re Le Ce
Analogous P v R(v) p L L/
L
Conduit R(v) Po™
System p 4 A A AL/K
AL
R(v) L P8
tit — ‘
Quantity P w o e Ag K
Re/2  Le Re/2 Re/2 Le/2 Le/2 Re/2
*—/ VN a AA A A e
Ce/201 —=Ce/2 = Ce

T REPRESENTATION

Variations of Electrical Analogs
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Method for Improving Lumped Model

It was stated previously that a lumped model generally is valid
only if the frequenciés involved are not greater than about one-eighth
of the first critical frequency of fhe lumped element.

This restriction can be eliminated by using several "“lumps" to
éimulate a conduit. Suppose, for example, that the highest frequency
encountered is about ten times too high for valid lumping; then, if ten
electrically equivalent circults are used in series (after reducing Re,
Le, and Ce by a factor of ten), one is able to circumvent the original
restriction. Figure 2.13% shows the electrical analog for an n-segmented

lumped model.

Re/n Le/n
—  MN—FTTTAMA—TTT——  « o 0 o7 e AT
FCe/n == -
& s o o o e s &

Figure 2.13. Analog for n-Segemented Lumped Conduit With Friction

In practice, it has been found that this model does lead to greater
accuracy, but that the number of segments required becomes very great
when the frequencies involved go beyond about the second critical value.

Another method of lumping, invented to overcome this difficulty, is

discussed below.
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Tapered Models

The representation of lossless fluid lines by a tapered lumped
model is the subject‘of a patent by Paynter (25). The analog of an
n—ségmented tapered representation as presented in the patent is shown
in Figure 2.14., The values of the ¥'s and &'s is dependent on the value

of n and are given in Table II for values of n up to 5.

T T ———— — — — — — — — T —— TV
‘;boLe ¢|Le ¢n-lLe anLe '
-V C  TY,C TVnCe

Il
11

)

L

Figure 2.14. Tapered Lossless Analog

TABLE II

VALUES OF 'S AND ¥'s

%o 1.000 +250 142 .099 .075 .061

LN +541 .289 .199 .152 .122

& .750 311 ~205 .154 124

Va2 .367 .218 .159 .127

[ 1Y .547 244 .168 .131

s .295 .182 | 137

& .452 .209 . 146

', .257 .160

e .39 .185

15 .229
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It has been found that this tapered representation gives good re-
sults for any number of critical frequencies and the number of “lumps"
or segments needed for an accurate representation up to a given fre-

quency is equal to

N +1
c

where Nc is the number of critical frequencies below the desired cutoff

frequency.

Conduit Wall Effects

Thus far in the developments, the effects which the conduit wall
may have upon the fluid dynamics have been neglected. Depending upon
the operating parameters of the system being analyzed, accounting for
the effects of the wall may be very simply achieved or, on the other
hand, may require an extensive mathematic treatment in order to get
reasonablé answers. Fortunately, most problems which are of concern can
be handled with the simple treatment. Problems demanding a complex
analysls usually occur only when dealing with extremely high operating

frequencies.

Simplified Analysis

Korte&eg in 1878 showed that wave propagation was dependent upon
both the elasticity of the fluid and of the condult wall and that the
resultant propagation velocity must be equal to or less than co. 1t
has been shown (see, for example, Reference 7) that the actual sound

velocity is
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Lo

ui-t- K'F/Et

where B, is Young's modulus for the tube material and f is given by

(2.34)

t
Do /h thin-walled tube
{= (2.35)
2 (—%%—ED)—‘;) " thick-walled tube

In Equation (2.35), D, represents the conduit outside diameter and D
represents the inside diameter. All that is required in the simplified
analysis is that one replace ¢, with the ¢ of Equation (2.34) in the

analysis.

More Exact Analysis

There have been a large number of papers written pertaining to the
effect of condult wall elasticity on the transmission characteristics
of fluid within the conduit. Basically, conduits may be divided into
two types with regard to the elastic characteristics of their walls:
elastic flexible and elastic stiff. For a conduit with elastic flexible
walls, it is assumed that pressure variations within the conduit can
cause radial deformations which do not cause corresponding axial dis-
turbances‘in the conduit wall, i.e., all disturbances in the wall are
localized and cannot propagate axially along the conduit wall. For
elastic stiff walls, on the other hand, disturbances can propagate
axially along the pipe wall. Some of the authors who have made contri-
butions on the effects of conduit elasticity are Lamb (26), Jacobi (27),
Morgan (28), Lin and Morgan (29), and Skalak (30). None of these

authors have treated exactly a viscous fluid in this connection. An
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exact treatment of both flexible and stiff walls for a viscous fluid is
outlined in Chapter VII,

In general, the relations expressing the propagation velocity
variation with frequency have trends as shown sketched in Figure 2.15.
Notice that only one mode transmits for all frequencies for the case of
an elastic flexible wall, whereas two modes transmit at all frequencies
for an elastic stiff wall. Note also that the limiting value for smali
frequency in both cases approaches the same value, c¢/cy. This is the
same value as predicted by the simplified analysis from Equation (2.34).
One can see then that the simplified analysis is exact for low frequen-

cies for the zeroth mode (nonviscous fluid only).
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CHAPTER ITI

EXACT SOLUTION OF FIRST-ORDER NAVIER-STOKES EQUATIONS

Introduction

In this chapter, a solution of the first-order Navier-Stokes equa-
tions, as developed in Chapter II, is given for a cylindrical, axi-
symmetric coordinate system. This solution will be the mathematical

foundation for the remainder of this treatise.

Mathematical Formulation of the Problem

For the purposes of this discussion, consider a fluid conduit to be
describable in terms of a cylindrical coordinate system as shown in

Figure 3.1.

Figure 3.1. Coordinate System

%6
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Assuming that thermal effects are not important, the first-order equa-

tions of change for a liquid are

% %—% = —qu+/1{§v(\7.fﬁ)—\7x(wﬁ)} (3.1)

which is the first-order Navier-Stokes equation,

30 —

St tevti=0 (3.2)
for the first-order continuity equation, and

A‘P\ = K (—Jg (3».3)

which is a liquid equation of state. Combining Equations (%.2) and

(2.2) gives

3f _
3F + €°’C°2 V-ui =0 (3.4)

where cq = 1%7?% is the isentropic speed of sound for the fluid under
consideration. The Equations (3.1l) and (3.4) are the equations of
change in terms of the first-order variables v; and p1. It may be re-
called from Chapter I that 1 and py represent small perturbations from
the zero-order conditions Vo and po. The restrictions on these equa-
tions are:’

1. The fluid velocity (v = v, + V1) at any point and time is
much less than the velocity of sound in the fluid, thus
justifying omission of the nonlinear terms.

2. Perturbations in the density are negligible compared to

the average density; that is, lF&l(ﬂ.Po.
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3. Temperature effects are negligible.
L, Fluid viscosity is spatially independent.

5. The flow field is axi-symmetric.
" Solution

To facilitate the solution of Equations (3.1) and (3.4), define a

scalar potential P and a vector potential ¥ such that
Ui= VY + VxVY. (3.5)

This means it is being postulated that the vector velocity is composed
of the gradient of the scalar potential ¢ plus the curl of the wvector

potential ¥. Taking the divergence of (3.5) gives
VT =V (3.6)

and also taking the curl of (3.5) yields

VxVi= Vx (W ¥) = V(- P)-V°7. (3.7)

The vorticity vector E associated with the perturbation velocity vy, may

be written as

.
5= Vx (3.8)

and that Z and ¥ are related by

2= T) - VY., (3.9)

For axi-symmetric flow, Z has only a component in the direction perpen-
dicular to ) andﬂ( , thus in the @ direction, by virtue of Equation (3.8).

It is necessary that ¥ have only a @ component also, as may be seen from
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the relationship between Z and ¥ given in Equation (3.9). Therefore,

V=0V, : (3.10)

Since the operator y has only Y and K components for axi-symmetric

conditions, V°*¥ = 0, which leads to

UxV; = B= -V, (%.11)
In summary, then, the divergence of the perturbation velocity vector is
related to the scalar field @ by Equation (3.6); for axi-symmetric flow,
the curl of the perturbation velocity vector, also referred to as the
vorticity, is related to the vector field ¥ by Equation (3.11).
Taking the divergence of Equation (3.1), the vorticity is elimi-

nated since the divergence of a curl is zero, and thus

I

%))

¥3=-%VWM+%vVWWﬁ& (3.12)

Substitution of (3.6) into (3.12) yields

VY _ 1 4 o (T
8 _-@v"’ﬁ,» 1 VIVY)

or

Y A 2
= "3V, (3.13)

From Equations (3.4) and (3.6)

af
—a—é=-@,c,,2 v, (3.14)

Taking the partial derivative of (2.13) with respect to t and
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substituting ap%/at from (3.14) gives

’y — 22 D 2
T S VY3V VY (3.15)

Taking the curl of Equation (3.1), the result is

3 (woh)
a; =T y—{vx [ (VMT‘.)—JE (3.16)

or

WY o fowx (2]} -

ot (2.17)

By virtue of the vector identity

W (W) = V©-3;)- VU

and the fact that z and ¥ have only © components, Equations (3.16) and

(3.17) reduce to

2t 2P

';;_{._"Vv 3 (3.18)
and

Y _ 2

&—t =V V )7”. (%.19)

Physically, Equation (3.15) is a viscous wave equation for plane or
one-dimensional waves; thus, @ is a viscous plane-wave potential func-
tion. Equation (3.18) is a vorticity diffusion equation and (3.19) is a
diffusion equation for the function ¥. By means of the substitution

v, =V + ¥x ¥ the two coupled partial differential equations, (3.1) and
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(3.4), which appear to be difficult to solve in original form have been
transformed into two independent partial differential equations (3.15)
and (3.19) of known solvable form. Equations (3.15) and (3.19) will now
be solved. The sblutions will be obtained in the Laplace domain for
convenience.

Applying the Laplace transformation to Equations (3.15) and (3.19)

yields (assuming initial conditions zero)
Y =L VYEt TV (3.20)
and
A o I
Y= vV (3.21)
Pay N\
where ¢ and Y are the transformed quantities.

Solving Equations (3.20) and (3.21) by the method of separation of

varilables yields

‘?}'—‘ AJd (kr) e = (3.22)

and

Yz

{ﬁ= B Jo(%‘f) e (3.23)

where A and B are constants of integration and Y is the separation con-
stant. Jo(Br) and J; (kr) denote the zero and first-order Bessel func-
tions of the first kind with arguments §r>and kr, respectively. Also,

the equations

2 ‘1 Y
K'=7= 4 (3.24)

and
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2 J2 g (3.25)
e= / L+ s

relate the parameters, k, Y, and@ « It should be noted that the separa-
tion constant Y must be the same in Equation (3.22) and (3.23) since ¥
and @ must both contribute to the perturbation velocity. Now that ¢

and ¥ are known, v; can be found since
— A o
=Y+ VxY (3.26)

where Vl is the Laplace transform of v;. Since

A\ N
- Q
V= %L% + k 5—% (3.27)
and
Vw- = 32 + lk%%(\r‘?) s (3.28)

equation (3.26) becomes
—  (ad ¥ 29 13 (4 z
Vi=) %av az%“kgaf?;?( V). (3.29)

The Laplace transformed velocity components may now be written as

= {B@J.(erﬂ A’/J(kf)% & (3.30)

Q) D)
I<>

Vies 3¢ -
and

Vg = g_% N Q\V W {B'\/J° @‘C)-}- Akjo(k\(‘)z e (3.31)
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From the equality of the ¥'s in Equations (3.24) and (3.25)

{Lk+ 5 = p° 5% . (3.32)

+
Lo+ %S’U’

It now remains to calculate the transformed pressure, thus from

© Equations (3.4), (3.6), and (3.23)

S?%’: _(%,lhz‘7zéa1=..E%,CQZEB(jLE@F);I}(evj Elyg

or

/2
2

R=- e"——? B(/2g) T(@IE . (3.33)
Equations (3.30), (3.31), and (3.33) are the exact general simultaneous
solution of the first-order axi-symmetric Navier-Stokes Equation (3.1),
the continuity relation (3.2), and the equation of state for a liquid
given by <3.3). The constants of integration, A and B and the parame-
ters (eigenvalues) Y, P, and k are to be determined from the boundary
conditions for a particular geometry. For a general case; thatis, for a
general set of boundary conditions, the transformed velocities and pres-

sure will become

V;Y‘ =7 {B,‘ %v\ JI(FV\‘C) +Aan J}(knr)} e ne (}-3'4—)
n

\,;7: = {Bv\-/ﬂ Je (@AY‘) + Ankn Jb(kn‘(‘)\% 8'/“% (3.35)

Y

and
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P| - - E%{LZ BY\ (,/X.__g:) J—o(PV\\{‘) Q,JM:_E (3.36)

In the chapters which follow, boundary conditions will be applied
to this solution for the case of a rigid cylindrical pipe and a cylig—
drical pipe with both elastic-flexible walls and elastic-stiff walls.
The significance of each family of eigenvalues which result from the
application of the boundary conditions will be discussed. Also, engi-
neering models will be developed which describe average velocity and
pressure conditions in a fluid conduit, thus, simplifying the mathe-
matics. Experimental studies will be described which attempt to verify

the mathematical models.



CHAPTER IV

APPLICATION OF THE EXACT SOLUTION TO THE CASE

OF A RIGID FLUID CONDUIT
Introduction

The purpose of this chapter is to present a rather complete treat-
ment of the application of the exact solution of Chapter III to the case
of a rigid fluid conduit. The existence of higher order modes with
respect to wave propagation in a viscous liquid will be demonstrated. A
complete discussion of these modes is left for Chapter VI. The major
part of this chapter will be devoted to various aspects of the zeroth
mode of propagation, such as the development of approximate forms for
the zeroth mode characteristic parameters (eigenvalues), a development
of the zeroth mode transfer equations and discussions of frequency and
transient responses. It will be seen thaﬁ the approximate value ob-
tained for the zeroth mode propagation operator corresponds to the
values obtained by previous investigators through the solution of a
reduced set of equations of motion. Also, the transfer equations ob-

tained are identical in form to those previously reported.
Characteristic Equations for Eigenvalues

In Chapter III, the general solution to the first-order Navier-

Stokes equation for a compressible 1liquid was found and expressed in the

L5
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Laplace domain form of Equations (3.34), (3.35), and (3.36) for
respectively, the radial velocity, the axial véiocity, and the pressure.
In order that the solution can be complete for the case under considera-
tion, the proper boundary conditions must be applied. The eigenvalues
knﬁ Tn, andgllmdll be specified if the relationship between velocity
and pressure is specified at the wallj i.e., if the impedance at the
wall is specified. The constants of integration An and Bn must be found
from an end condition for the conduit. This means that the fluld veloc-
ity at the conduit end must be expanded as a series of the eigenfunc-
tions and the coefficients determined.

For the case of rigid conduit walls, it is required that both the
‘radial and axial fluid velocities go to zéro at the pipe wall, r = rg.

Applying these conditions to Equations (3.34) and (3.35) yields

By B 31 (8n0) + Ann T3 (knts) = © (4.1)

and

Butn To (pa5) + Ankin Tolkals) = 0. (k.2)

Elimination of A and B by combining Equations (4,1) and (4.2) gives

ki B UGB _ g2 3 (k) (4.3)
To (%) T (ko)

which is the characteristic equation for the eigenvalues. The simulta-
neous solution of Equations (3.22) and (4.3) will yield the eigenvalues.
The exact computation of these values can only be achieved by a numeri~
cal iteration procedure. A computer program has been set up to do this

and the procedure and program are detalled in Appendix A. In general,
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it must be sald that the exact evaluation of the eigenvalues is not
amenable to hand calculations. Fortunately, it is easy to obtain
rather good approximate values for the n = O or "zeroth" mode eigen-
values. This will be discussed in the next section.

In summary, it has been found that application of the boundary
conditions at the conduit wall results in a characteristic equation
which may be solved for the allowed values of the parametersgn, Yn’
and kn' In general, there will be an infinite number of allowed values.
Each set of numbers corresponds to a mode of propagation. The summation
of all of these modes, weighted properly by the constants of integration
An and Bn, give the fluid velocity and pressure at any point in the
fluid conduit. The constants An and Bn must be evaluated in terms of
end conditions; that is, it is necessary that one know the r dependence
of the velocity at some axial position 2o The evaluation of these con-
stants will be discussed in more detail in Chapter VI. The significance

of the modes will also be discussed more fully at that time.
Approximate Form of Zeroth Mode Equations

The difficulties in exactly solving for the eigenvalues from the
characteristic equation was indicated in the previous sectibn, If it
were not for two facts, the application of the exact solution to every-
day engineering problems would appear difficult indeed. However:

1. For most engineering problems, the influence of the

zeroth mode is predominant.

2. It is possible to get good approximate values for

the zeroth mode eigenvalues.

With these two facts in mind, the approximate form of the zeroth mode
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equations will be obtained. It will be seen that the approximate form
of the zeroth mode propagation operator corresponds to that reported by
several previous investigators.

It may be assumed that, to a first approximation, the zeroth mode
value for@oro is very small or small enough that Jo(@oro) and J, (@oro)

may be approximated by their small argument values

J&@J‘b) ~ E‘; (4.4)
and
Jo (Ro0) = L. (4.5)

The validity of this assumption may be judged on the basis of the
comparison between exact values for "(’oro and the approximate value
which will be presented later in this section.

Substitution of Equations (4.4) and (4.5) into (4.3) gives

2 ) (ko\rb)

8% = o, % (4.6)

koto Jo(ks)

or, by substituting Equation (4.6) into (3.32) yields

2, 4 =
= Lo 5V . (4.7)
1 — 2 Jl (ko\(\o)
Koo Jo(KoYs)

To complete the approximation, since (lorois small, k = i"s/\) for

sl &L CO/Vo This yields, subject to the limitations

|g°<‘o

<<i

and
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|a| << Lo/or

that

. S
kb = A 'v (}“'08)
gnd

Vo

(4.9)

6, { 21 J, (ko)

koVo Jo(ke¥s)

where Y _ is given by Equation 4.7,

To evaluate the accuracy of this approximation, T} and c/bo have-
been obtained by both the exact procedure of Appendix A and with the aid
of Equations (4.7) and (4.8) for the zeroth mode. The results are shown

plotted in Figures 4.1 and 4.2. Note that

T = Real part of Yr
r o
’I; = Imaginary part of Yro
c F -
/bo = Normalized phase velocity = ng
c
wr
F = Radial frequency number = =
nr ¢,
D = Radial damping number = Y.,

nr r ¢
. o 0

Notice that the error for I} is much greater than the corresponding
error for 3&&). With the aid of these two figures, a judgment can be
made as to the validity of the approximate T; based upon the use
intended. Suppose that it is desired to have an error in IB no greater

than one per cent and the value of the radial damping number happens to
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be .00L. From Figures (4.1) and (4.2), it may be seen that the maximum
radial frequency number can be about 1,0. For most engineering problems,
the approximate value of I; should suffice.

It should be recognized that the approximate value of Yo just
derived is almost identical to that given by Equation (2.19) as reported
.by several previous investigators. The implication here is that the
propagation operator given by these previous investigators, and which is
recognized as being for the zeroth mode only, is really an approximation
to the exact value of TO.

Now that the approximate forms of the eigenvalues have been demon-
strated, they will be applied to the axial velocity and pressure in or-
der to obtaln the corresponding approximate forms.

The zeroth mode transformed first-order axial velocity and pressure
may be written from Equations (3.35), (3.36), and (4.2) as (omitting the

sub 1 for convenience)

Jo(f)  Jlker) ef{’%
J [~ L @oYB> Jo (ko\(‘o)

(4.10)

Vzo = BD'JO J ° (eo\ro)

and
= = O \O ’Coz 7‘_ 2 '/D + o
':o __E__S (’}/b @0 ) ‘)o( %Q(‘) e . (4.11)

Applying the approximation of Equation (4.5) to (4.10) yields
Bo'/o {1 Jo (koY) ‘g e'/ (ko12)
To(kot)

and similarly for Equation (4.11), using (3.32) and (4.5) gives

R=-Rs B,,ey"%

(4,13)
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Considering the response of the zeroth mode velocity to a sinusoi-
dal pressure gradient then it is found that the time domain velocity may

be expressed as

e K {40 BOEET )] gt
E%CU Je GQV'Véceéf )

where the pressure gradient is

9P _ y 4wt
1 = Ke*"

This same result has been reported by Sexl and Uchida as a result of
solving a reduced form of the equations of motion. See reference (2)
for a review of these results.

For wvalues of the parameter 'Y(‘) Wy 5. The velocity profile is
essentially parabolic while for values greater than 5 the profiles begin
to look like those shown in Figure 4.3. Notice that the fluid near the
edges of the pipe responds more quickly than the fluid in the center of
the pipe. This phenomena is called "“Richardson's annular effect" and is

discussed, for example, in Schlichting (2).

- s
e e
o =

aT
wfo Wiy 7 wt, +

77} 4

3T
w‘l'o + 7 wfo +Tr

Figure 4.3. Typical Zeroth-Mode Velocity Profiles due to a
Sinusoidal Axial Pressure Gradient
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It has been shown that the exact solution as derived in Chapter
IIT, when applied to the zeroth mode, can be reduced by using small
argument values for Jo(ﬁ)ro) and Jl({%oro) to give the propagation oper-
ator derived by F. T. Brown, N. B. Nichols, and others. The results of
these authors was reported in Chapter II. The corresponding approximate
-form for the zeroth mode velocity profiles was seen to be identical to
the work of Sexl and Uchida. The results of Brown, Nichols, Sexl, and
Uchida was obtained from the solution of a reduced form of the eguations
of motion. The conclusion is that the work of the above mentioned
authors is an approximation of the exact solution presented herein. The
accuracy of the approximation may be partially judged on the basis of
Figures 4.1 and 4.2,

In this section, concern has been given only to the discussion of
the zeroth mode of propagation, or, also called the fundamental or
longitudinal mode. What about the effects of the higher modes? The
calculations involved in working with the higher modes is very cumber-
some, as may be seen in Chapter VI. Fortunately, for most engineering
applications, the effects of these higher modes appear to be negligible.

A concept useful when performing engineering calculations involving

the zeroth mode will now be discussed,
Derivation of Zeroth Mode Transfer Equations

It is desirable, from an engineering point of view, to derive from
Equations (4.12) and (4.13) a set of transfer equations which will
describe the average conditions at some point z along the conduit in

terms of the average conditions at z = z .
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In the previous section, it was found that the zeroth mode axial

veloclty and pressure can be expressed approximately as

V?;o = Boﬁ/o 1__ Jolker) e'LE (4.12)
Jo (KoYs)
and
B= -0.s B. Q..'/o.?; (4.13)

Since only the zeroth mode is being discussed at this time, for the rest
of this chapter "0 subscripts which refer to the zeroth mode will be
omitted. Averaging Equation (4.12) across the conduit cross-section .
gives (the bar notation indicates the quantity has been averaged over

the cross-section by integration from r =0 to r = ro)

- 8//{ _ 231 (kn) % e'/% (4.14)
kG Jo (KYs)

and

y2

P=-psBe | (4015)

Up to this point Y has been considered, for convenience, to have
only positive values; but, in general, it will have both a positive and
a negative vaiue. Pogitive values of Y indicate waves progressing in
the negative z direction and negative Y's indicate waves traveling in
the positive z direction. Rewriting Equations (4.14) and (4.15) to in-

¢lude positive and negative values for ¥ yields

w/{i— 25,000 {. (g™ Bze"/ai -

K‘ﬁ Jo (bre\)
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and

-w/zz |

P= -fs {B,e'fa,t B2 (4e17)

In Figure 4.4 is shown a diagram of a fluid conduit with appropriate

end conditions. It may be seen that the boundary conditions which it is

o

—_ P
Vi —
i %)
R Z=0 g=2

Figure 4.4. Diagram of Fluid Conduit for
Zeroth Mode Transfer
Equations

necessary to satisfy are

il
I

and

- R

Z=0

'"Ul

Substitution of these boundary conditions into Equations (4.16) and
(4.17) gives a pair of equations from which By and B, may be found.
Substituting these values back into Equations (4.16) and (4.17) yields

the familiar form of the transfer relations

\72= \7: Oosk'/z - E seuh W/Z- (4.18)
Ze
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and
15= ﬁ.: COSM/?: - Z.Vz swl'n/& (4.19)

where

Zg= Qo 'Co-z'}/ . (4.;20)
S

Equations (4.,18) and (4.19) are then the zeroth mode transfer equations
relating the average transformed conditions at some arbitrary z to the
average transformed conditions at z = O. One may rewrite these rela-
tions in another convenient and familiar form relating the conditions
at some other position 2, where 2 is oriented a +L distance from 1 in

the z direction. See Figure 4.5.

< |
v

b ¢ -

=) -

Figure 4.5. Diagram of Fluid Conduit With Averaged
Quantities at Bach End

This form is

V. = V cosh™ = P swhl (4.21)
Ze

and
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—P; = P cosh= ZV sewhl” (4.22)

The quantity T appearing in Equations (4.21) and (4.22) is related

to ¥ by

M=l

and is often called the propagation operator. In Chapter II, it was
noted that Y, the propagation constant, consists of a real part and an

imaginary part, or

Y Yprire .

Therefore,

r1= F;+6[1,.

Figure 4.6 shows the variation of Iy, the spatial attenuation, with
axial frequency number (wL/c,) for various values of the axial damping
number (VL/cyr, ). Figure 4.7 shows the variation of dimensionless phase
velocity (¢/cy) with axial frequency number.

Notice that when working with a single fluid conduit, Equations
(4.21) and (4.22) show that b& specifying any two variables, one can
find the response of a third in terms of the fourth variable. This
means, for example, that if one specifies the impedance at one end
(specify §_and V for that end), then the response of PtoVor VtoP
for the other end can be found. Further discussion of the use of trans-
fer equations was given in Chapter II. Notice also that Equations
(4,21) and (4.22) are of identical form to those reported by several

previous investigators. In general, the zeroth mode transfer equations

will always be of this same form, only the value of the propagation
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operator I" will change, depending upon the original equations of change.
These transfer equations have been presented by many previous workers
and, thus, are not an original contribution of the writer. They have
been derived in this section for the sake of giving a greater degree of

completeness to this chapter.
Zeroth Mode Frequency Response

In this section, the frequency response of a fluid conduit with two
types of terminations will be examined. The first will be for a termi-
nation impedance which is equal to the characteristic impedance of the
line. The second will he for a zero termination impedance.

Consider a fluid conduit as shown in Figure 4.5. Rearranging
Equations (4.21) and (4.22), they may be written in an impedance form
which gives the impedance of end 1 in terms of the terminal end imped-

ance, thus

Z,= ZLatosh+ Ze scuhl” (4.23)
coshl +(Zx /g, ) siwhl"

where Zy = Py /Vy.
Specifying the special case of a termination impedance equal to the

line characteristic impedance yields

Z.=Ze= &'C—"zl (b .2k)

S

which means that the impedance looking into end 1 will be the same as
the line characteristic impedance. Figures 4.8 and 4.9 show the ampli-

tude and phase of 2, versus axial frequency number, Fp, = wL/co, with
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the axial damping number, D, = vL/bOrg , as a parameter. This was
computed from Equations (4.24) and (4.7). Notice that the amplitude for
~ this case is a simple monotonically decreasing function with frequency
number. There are no resonant conditions. If one specifies any termi-
natien,impedance other than Zy = Z,, then there will oécur resonant
frequencies for the impedance looking into end 1.

As a particular example of a termination impedance other than Z,,

consider the case where Z2 = 0. For this case,

Z,= ZJ-EWL\P, (4.25)

The amplitude of Eﬁ = [?(t}pocoV6] for this case is plotted in Figure
4,10 as a function of axial frequency number for various values of the
axial damping number. Notice the influence of the damping number. A4s
damping number increases, the resonant frequencies decrease. Also
notice that, for a given damping number, the damping effect increases
with frequency as evidenced by a decrease in resonant amplitude with
each successively higher resonant frequency. This effect might also
have been predicted from Figure 4,6 which shows increasing attenuation

with increase in the frequency.
Zeroth Mode Transient Response

In tﬁe previous section, a study was made of the application of the
zeroth-mode transfer equations to the frequency response of a fluid con-
duit with two types of terminal impedances and some important implica~
tions were noted. Perhaps more practical or informative type of

responses to study from an engineering point of view are the time
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domain transients. The major problem, in this regard, is that the
actual calculation of time domain transients are much more difficult
than frequency type responses. In this section, the time domain re-
sponses of a fluid line with the same two types of terminal impedances
as examined in the previous section will be discussed.

It should be emphasized that by specifying the impedance at one end
of the line the response of any one variable to any other variable for
the line can be determined. This is not obvious from the impedance form
obtained in Equation (4.23). Take first the case of a terminal imped-

ance Zp = Zg. The line equations now become

R= Peosh- 2.V, sewhl”

= V,Z.= ZL{V, coshl™ - _;_'__ swl«["} . (4.26)

e
Examination of Bquation (4.26) will reveal that it is now possible,
because of having specified the impedance at one end of the line, to
obtain the response of 51 to Vj , Py to §j , V1 to Vj or Vi to ﬁj. The
time responses of Vi to 51 and ?2 to 51 for impulses of Py will now be

discussed. From Equation (4.26)

i

- F
V- &

are the response equations. Letting ﬁl be an impulse

7 1
V(8= Z) (4.27)
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and

— ~Tes
Re)= @ ) »,) (4.28)

To obtain the time domain responses, use is made of the inverse Laplace

transformation, or

Ch o0
fw= L |Fe e%ds . (.29)
e
Q-L00

From Equations (4.27), (4.28), and (4.29)

Chin0
— t .
V= L c® ds (4.30)
me Za(s) "
(-so0
and
cHao0
- Fee) .
= L] e® g, (hes1)
CoetO

The actual inversion of these equations is rather involved because of
mathematical difficulties. F. T. Brown has done an extensive amount of
work in the calculation of fluld line impulsive responses along lines ‘
similar to those indicated by Equations (4.30) and (4.31) making the
numerical -evaluation of these equations by the writer superfluous,
Proceeding now to the case foi which the terminal impedance is zero,

the equations become

P cosh- Z. Vi swhM=0

and

Vq. = V. COSH"% % Sw”;,
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It may be readily seen that one can now find the response of any one
variable to any other. This is again due to having specified the
impedance at one end of the line. For the purposes of this example,
the response of_?i to a unit step in Vy will be calculated. Thus,

putting -’571 = ]739

—PT= Zc.‘lﬂvl‘\ . VT = Zu[-gnkf" (4.32)

or, in the time domain

Ctie)
0= 2| 29 Lkl e®ds | (h-33)

C=s0

Evaluation of Equation (4.33) has been performed by a summation of the
residues as described in Appendix B. The results are plotted in Figures
b,11, 4.12, 4.13 and depict the pressure history typical of water hammer
for three values of the damping number. These figures clearly show the
dispersive and dissipative effects which viscosity has upon the temporal
response of a fluid line. The dissipation results in the attenuation of
all frequency components with greater attenuation of the higher fre-
quency being evidenced by the fact that principally the fundamental fre-
quency remains after some finite number of oscillations. Dispersion
results in the "talling off" effect for each oscillation due to the

faster traveling high frequency terms.



69

i T00°0 Jequny Sutdueg TRIXY
$(gge) uoTyenby woxy AJOISTH SaANSS9IJ JOWUWEH I93BM  *TT°H aand Ty

YOO = NZD

M=

0
M, ) of
(32t




70

20°0 Jequmy Surdweq TRTXY

‘(¢¢°4) uoTrenby woxg LI03STH oanssedq Jowwey Jo3em °ZI°H oanSig

z2o*=2ENg

(o3 2

AN
S~ <

[EPICE

°A_®5°d



71

;mm.i uoTyenby woxg £I03STH oJINSSSId Joumrey J9%eM *¢T°H oan3Td

T°0 Jequmy Surdueg TeIXY

v= 2NG

O

0
oA °D %0
o) d

o)




CHAPTER V

EXPERIMENTAL VERIFICATION OF ZEROTH

MODE TRANSFER EQUATIONS
Introduction

To determine the validity of the transfer equations developed in
the previous chapter for the zeroth mode, an experimental study was
designed and conducted. The experimental models were chosen on the
basis of having the greatest possible control of the accuracy of the
variables concerned. Both frequency response and transient responses

were studied.
Experimental Frequency Response

To experimentally verify the zeroth mode transfer equations frém a
frequency response standpoint, the-apparatus schematically shown in
Figure 5.1 was constructed. With this apparatus, the impedance at the
reservolr end was maintained at zero. Because of the piston driver at
the other ‘end, the velocity there could be varied in a sinusoidal manner
at frequencies from O to about 100 cps. Since the piston amplitude and
driver oscillation frequency were accurately controllable, the velocity
of the fluid at the driver end was therefore precisely known. By posi-
tioning a pressure transducer near the piston, the impedance amplitude

at the driver end could then be obtained from recorded values of
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pressure and velocity amplitudes by simply taking their ratio.

Figures 5.2 and 5.3 display results of experiments performed with
the above described apparatus. These figures also show the correspondj
ing theoretical predictions of the zeroth mode transfer equations which,
for this case, reduce to Equation (4.25). Note the excellent agreement
-between thé experimental results and the theoretical predictlons of the
zeroth mode equations. This fine agreement substantiates the validity
of the zeroth mode transfer equations for the range of parameters

given.
Experimental Transient Response

To examine the validity of the zeroth mode equations from a time
domain point of view, an experimental model has been chosen which repre-
sents the conditions of the classical water-hammer problem. Figure 5.4
shows the physical layout of this model. It consists of a line with a
constant pressure source at one end and a fast acting valve at the other
end. With the valve initially open, fluid flows from the reservoir
throug@ the line, valve and flow meter into a second reservoir. When
the valve is suddenly closed, the transducer located at the valve can be
used to monitor the pressure response to the step change in flow result-
ing from the valve closure.

Pigure 5.5 displays typical experimental pressure traces resulting
from sudden valve closure with the above described apparatus. Compari-
son of these results with the theoretical predictions of Figure 4.11
demonstrates, as for the frequency response case, an excellent agreement
between theory and experiment. This further substantiates the validity

of the zeroth mode transfer equations developed in Chapter IV.
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As a result of the excellent agreement between theoretical and
experimental results, it may be concluded that the zeroth mode transfer
equations are a good model in the range of parameters of the tests con-
ducteds In terms of damping numbers and frequency numbers, the range

for these tests waé
0.0001 £ Dpo, < 0,02

0.5 < Fp, < 1000




CHAPTER VI
THE HIGHER MODES OF VISCOUS PROPAGATION
Introduction

In Chapter IV, it was found that the application of the condition
of zero fluid velocity at the wall of a rigid conduit led to a set of
equations relating the parameters %, k, and Y. Solution of these equa~
tions yielded an infinite set of the eigenvalues with each set corre-
sponding to a mode of propagation. The general expressions for the
transformed velocities and pressure were given by Equations (3.34),
(3.35), and (3.%6) and consisted of an infinite summation of all the
modes. The purpose of this chapter is to delve more completely into
the mathematics and physical meaning of these modes.

Discussions of higher modes of propagation of acoustic type waves
are extensive in the literature (e.g., 26, 27, %1); however, these all
deal with waves where viscosity has been neglected. In this chapter,

viscous propagation will be discussed.
Higher Mode Eigenvalues for Rigid Conduit

The characteristic equations for the eigenvalues of a rigid fluid-

filled conduit were demonstrated in Chapter IV to be

kv\ EV\ J\(%v\‘ﬂ\) =J“1 Jl(kh‘ﬁ:‘) (601)
Jo(@vms Jo (kne)
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and

- g:‘-a— s* (6.2)
Lor+ LS

For each set of values of s, Vv, ¢, and r,, there exists an infinite
number of discrete values of the parameters Y,, kp, and @na hence,
eigenvalues. Each family of numbers, represented by a value for n,
corresponds to a mode of fluid motion. The n = O or zeroth mode was
discussed extensively in Chapter IV and found to be of considerable
importance in the modeling of a fluid conduit. It was found that the
most important of the parameters was Y, the propagation constant, and .

that

'/=‘VL+“37£

where Yr represented the spatial attenuation factor and ¢ = %L repre-
c

sented the phase velocity of the disturbance. For the higher modes, Y

is also important and has the same physical significance.

By use of the procedure described in Appendix A, Equations (6.1)

and (6.2) have been solved for the Y's of three modes. Figure 6.1 shows

wr
a plot of Y, * r, versus the radial frequency number, ?;g, for a typical
o
value of the radial damping number, ;lémo Figure 6.2 shows the corre-

oo
sponding dimensionless phase velocity, c/bo, for these three modes.

Figures 6.3 and 6.4 demonstrate the variation of the real part of ¥ and
3%0 with radial damping number for the first mode. It is important to
note that a discontinuity occﬁrs in each of the higher mode values of Y.
This discontinuity might be termed a cutoff frequency since it separates

frequency régions of very high spatial attenuation and very low spatial
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attenuvation. Below this cutoff frequency, the contribution of a partic-
ular mode to the over-all disturbance will be damped in a relatively
short distance from its point of origin, leaving only the zeroth mode
to be propagated any significant distance. This becomes very evident
if an example is considered. Take the case of a disturbance in the
first mode in a pipe at a radial frequency number of 1.0. From Figure
6.3, it may be seen that the spatial attenuation factor is Yrro~= 2.9
This means that in a distance of one pipe radius from the source, the
disturbance will have decayed by a factor of GQYP° Fo or 0.02. Thus,
the disturbance (first mode), in magnitude, had decayed to two per cent
of its original value. |
It is interesting to contrast the higher mode spatial attenuvation
and phase velocity for viscous propagation as shown in Figures 6.1
through 6.4 with the corresponding no viscosity case as presented in the
literature. For the case of no viscosity, the spatial attenuation for
each mode would be zero above the cutoff frequensy. The zeroth mode
would have zero spatial attenuation for all frequencies. The phase
velocity for the case of no viscosity is zero below the cutoff frequency
in contrast to a finite value of phase velocity below the cutoff when

viscosity is included,
Velocity Profiles

To get a better physical feeling for the higher médes9 the axial
velocity profiles for the first few modes for a rigid fluid condult will
now be obtained. From Equation (3.35), the general expression for the

axial velocity in the Laplace domain was found to be
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'\]‘%-;Z {B\n"/v\ Jb(?w\f) + AM kv\ L(knf)} 8%&‘ (3.35)

n

The condition of zero axial velocity at the wall yields the equation

Bn’/v\ Jo(ﬁv\‘ru) + Av\kV\ Jb (khﬂ) = D

which along with Equation (3.35), gives

V% =ZBV\.')IH Jc(ﬁ“‘{‘d){x’(?"‘r) _ Sa(kn‘(‘)% e'/nz
" NACAY Jo (en's)

= ZB“J“ Jo(@v\‘ﬂ;\) F'antv*) eJWZ. (6.3)
n
The function F_ (r) will be called the axial velocity profile

function for the n'B node. For a given damping number and frequency
number, this profile function may be calculated for each mode as a func-
tion of r. In general, an(r) is complex, having both real and imagi-
nary parts. This function has been calculated for four modes (o, 1, 2,
and 3) for various combinations of frequency number and damping number.
Figures 6.5, 6.6, and 6.7 display the results of these calculations.
Note that the higher modes (1., 2, and %) retain the same general shape
for the various combinations of frequency number and damping number.
The zeroth mode profile, on the other hand, has a shape which is highly

dependent upcn these two parameters.
Series Expansion

Thus far all efforts have been concentrated on satisfying the
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fluid conditions at the conduit wall and obtaining the results eigen-
functions. What about satisfying end conditions for a fluid conduit?
Suppose that the transformed condition at the end z = O for a fluld
conduit is G(r); that is,

\62 = G;CT)

2=0

The problem is to calculate the coefficients in the expansion given by

Equation (6.3); that is, to find B such that

661 = ) Bar T(Ba8) Farte). (6.1)
A8

One might think that since an(r) is a linear sum of the eigenfunctions
Jo(enr) and Jo(knr) that this problem would be a simple extension of

ordinary Fourier-Bessel expansion methods. Such is not the case. This
is because a set of normalizing functions is not obvious. Suppose that

one could obtain a set of functions FVZm(r) such that

Xo \ O, W # W
ngn(.‘r')' F_Zm (\r")"ClY\ =

A g M=N
One could then multiply both sides of Equation (6.4) by the orthogonal
functions-F'Zm(r) and integrate to yieldl

Yo

Bae — 1 6. Ry de | (6.5)
T Tolpt)

lIt should be noted that this discussion makes no mention of the
usual mathematical problems of convergence, uniqueness, etc. The
writer's purpose is not to examine the mathematical delicacies, but
rather to attempt to "get an answer®.
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Thus far the writer has not found a set of normalizing functions; how-
ever, a scheme is presented below which will be seen to show all indica~
tions of satisfying the desires proposed of Equation (6.4).

Kaplan (32), in his discussion of Fourier series has given the fol-
lowing theorems:

Theorem Let f(x) be piecewise continuous for

The coefficients of the partial sum

T 0o + 0\ COSX + by SwE + oo v + Oncosnx + bn Sunx
of the Fourier series of f(x) are precisely those among
all coefficients of the functions

300V = Rt Peos x + @ Sewx i + Pucosnx + @, SeonK

which render the square error
™
7
j [fe0r- §,00] de
-
a minimum. PFurthermore, the minimum square error En

satisfies the equation

LAY

b
2
E, = J[ﬁuﬂ de - [k .+ E (ak+ bﬁ)__),
~r K=
In a manner analogous to the preceding theorem, the coefficients

of Equation (6.4) will be evaluated. Assume that the coefficients of a

partial sum, Sk(Tﬁ, are known; that is

k R
6.6
Ce (M) = E Bv")'v\ Jo(@ﬁo) Fan (), (6.6)

LYY

Define a square error as

Yo
EK= JEGQP)_ SK(‘(‘)]%Y‘-&Y‘ . (607)
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Hypothesize that the coefficients Bn are those that minimize Ek' This
means that the coefficients can be evaluated one at a time, starting
with Bo’ by simply minimizing Ek with respect to Bk' Suppose it is

desired to find the coefficient Bk+1 where the first k are known. Then

Yo
2
Exel =f[@m- Sktr) - Bm/,«,. (B %) Fa e wlvdr 6.8

It Ek+l is to be a minimum with respect to Bk+1’ it is necessary to

have

3 Eky) _ (6.9)
o Ben

Applying the condition of Equation (6.9) to Equation (6.8) gives

By = f [6er) - Sk(ﬂ]'/\m 30(%k+|‘ﬁ> Fé(p.)(f Y"CIY‘ (6.10)
j [.’7/k+l b(€k+| ) F-Z(M)CY‘)] v.dv

This method has been used to evaluate the first six coefficients

for the case of a piston oseillating in a rigid conduit. Since this
implies a constant velocity at the piston face, G(r) = 1 was used for
the boundary condition. The results of the caleulation are tabulated

in Table III. Utilizing these coefficients, the six term approximation
of the transformed axial velocity has been calculated for various axial
distances from the piston face. The relationship describing this ap-
proximation is given by the first six terms of Equation (6.3). The
results are graphically demonstrated in Figure 6.8. Note the transition
of the profile from flat at the piston to essentially the zeroth mode

profile beyond % = 0.5, The frequency number for these calculations was
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0.2 which is well below the cutoff freguency for all of the higher
modes. This explains why only the zeroth mode is propagated any great

distance from the piston.

TABLE III

TABULATION OF THE FIRST SIX COEFFICIENTS OF THE SERIES EXPANSION
FOR A PISTON OSCILLATING IN A RIGID CONDUIT
(Fm,zoz,nm_z.m)

B&TOJO(FbrO) = 1.100 - 0.29571

B Y1do(frry) = 0.4187 - 0.16861
BaY2 o (Bary) = 0.4951 + 0.06531
BaYQJO(QarO) = 0.5076 + 0.17561
BaYado(farg) = 0.5000 + 0.23314
BsYsdo(sry) = 0.4572 + 0.21741

Experimental Investigation of Viscous Modes

As a result of mathematically demonstrating the existance of the
infinite set of viscous modes of propagation, the writer became eager to
obtain an experimental demonstration of their existance. By viewing the
action of a birefringent fluld in the neighborhood of an oscillating
piston in a plexiglass tube, the effects of the higher modes have been
observed.

Figure 6.9 schematically describes the experimental apparatus used.
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The working fluld consisted of the following components by weight:
water - 85%
milling yellow dye - 1.4%
glycerine - 13.6%
This fluid exhibited the property of optical birefrengence2 when in a
state of shear stress.

The test sectlon was viewed between crossed polarizer planes with a
light source wehind the first polarizer. The piston was oscillated at a
constant frequency of about 2 cps and several photographs were taken to
record the visual effect. These photographs are displayed in Figure
6.10. The patterns observed represent the state of shear stress within
the fluid. Since the phenomena was viewed across a cylindrical tube,
the observed effect was actually an integration of 2ll the effects
across the tube. The pattefns were observed to change with time depend-
ing upon the position of the piston. This accounts for the difference
between the photographs. No record was made of piston position when the
pictures were taken. The important phenomena which is demonstrated by
these pictures is that there appears to be a boundary effect near the
piston which is damped out at a Z/D of about .5 measured axially from
the piston face. The patterns for Z/D>.5 represent the state of shear
stress of the zeroth mode only, since all higher modes are damped out.
The patterns for Z/D < .5 represent the state of shear stress for the‘
sum of all the modes.

Referring back to Figure 6.8, which represented the near piston

2A considerable amount of work with birefringent liquids has been
done by Thurston (33). Frenkel (34) also gives a discussion of the
theory of ligquid birefrengence.
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Photographs of Experimentally

Figure 6.10.
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velocity profiles obtained from a summation of a few modes, an interpre-
tation of the stress patterns obtained experimentally will now be given.
For the axi-symmetric case here being discussed, the transformed shear

stress may be expressed as

[N

(6.11)

Eo)7 amz

The lines observed in Figure 6.10 represent the conditions for which

”~ . P
T = constant. If one approximates T _ by
rz ra

lines of constant shear stress can be obtained from the predicted neaf
piston axial velocity profiles of Figure 6.8, Typical results of such a
procedure are shown in Figure 6.11. Note the obvious similarity between
the theoretical state of shear stress displayed in this figure and the
experimental results shown in Figure 6.10. This excellent agreement be-
tween theory and experimént appears to substantiate the existence of

these higher modes of viscous propagation as predicted by the theory.
Discussion

This chapter has been devoted to a thecoretical and experimental in-
vestigation of the higher modes of viscous propagation. The results may
be summarized as follows:

l, The higher modes were shown to have a relative cutoff

frequency, below which their §patial attenuation is very
great. These modes deégnstfate a finite phase velocity
below this cutoff frequency which is opposed to the re-~

sults which have been published concerning higher modes
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of propagation neglecting viscosity (27). Above their
cutoff frequency, the higher modes have spatial attenua-
tion, but of a much smaller magnitude than below the
cutoff.

The r dependent part of the axial velocity was found to
be representable, for each mode, in terms of a profile
function, an(r), having, in general, a real and imagi-
nary part. The profile shape for the zeroth mode was
found to be sensitive to values of the frequency and
damping numbers. For the higher modes, the general
shape stayed much the same, regardless of the values of
these two numbers.

In order to satisfy end conditions for a fluid trans-
mission line, it was found necessary to obtain a series
expansion in terms of the velocity profile functioﬁs
(eigenfunctions). The coefficients of this expansion
were not obtainable by ordinary methods since a set of
orthogonal functions (orthogonal to the eigenfunctions)
was not known. It was found to be possible, however, to
evaluate the coefficients one at a time by a method of
minimizing the square error. The absolute validity of
this method is undetermined at this time, but the results
seem to demonstrate its practicality.

A flow visualization technique was used to obtain photo=-
graphic records of the state of shear stress near an
oscillating piston in a tube. Interpretation of the

results in terms of the theoretical predictions seem to
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validate the existence of the higher modes.
To the best of the writer's knowledge, the discussion of the higher
modes of viscous propagation as given in this treatise is the first ever

presented. It is hoped that it may represent an advance in the state of

the art.



CHAPTER VII
NON-RIGID WALL EFFECTS
Introduction

The purpose of this chapter is to outline an analytical approach
to the problem of determining the effects which non-rigid walls have on
the transmission properties a viscous fluid carrying conduit. Basically,
there are four types of conduit walls:

1. Rigid walls - Those walls which are assumed perfectly

rigid and do not give under the influence of a pres-
sure force. This type of wall has an infinite radial
impedance, i.e., %%}==oo o

2. Pressure release walls - Those walls which just con-
tain the fluid but exert no force on the fluid. This
type has a zero radial impedance.

3, BElastic flexible walls = Those walls which give under
pressure and have some finite radial impedance but do
n;t propagate a disturbance in the axial direction.

k., Elastic stiff walls - Those walls which have a finite
radial impedance and do propagate a disturbance in the
axial direction.

The model for a rigid conduit was developed in Chapter IV. The

remainder of this chapter will be devoted to discussions of conduits

103
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with elastic flexible and elastic stiff walls.
Elastic Flexible Walls

If one is studying the dynamic characteristics of fluid-filled
elastic tubes, such as rubber, where the major effects are those due to
tube inertia and tensile stress in the wall, then the equation of motion

for the tube is (35)

hh ST + 6 (hEe /) - 72

where
h = tube wall thickness
r = tube radius
Et = Young's modulus for tube material
b = wall radial deflection
pt = fluld pressure at tube wall
Py = density of tube wall.

Applying the Laplace transformation to Equation (7.1) gives

b8 v 8 (hE/ad) = R

or

Sir= F% iy
(Pehet+ hEe/v)

Noting that the transformed radial velocity and deflection for the tube
”\
wall are related by Vft = Sfﬁd the radial impedance for the tube wall

becomes
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R _ Rhs'ihE/gr (7.2)
Vet g

For these calculations, it will be assumed that the wall deflections are
small compared with the tube radius so the conditions at the wall re-
quire that the axial fluid velocity be zero and the fluid radial imped-
ance at the wall equals the tube radial impedance. From Equations

(3.30) and (3.33), the fluid radial impedance at the wall is

. (7.3)

p . sy 2 500
Ve S BB J1(86) + AY Ji(ke)

The condition of zero axial fluid velocity at the wall yields from

Equation (%.31)
BYJ(a0) + Ak To(kn)=o (7.

Combining (7.3) and (7.4) to eliminate the arbitrary constants, A and B

yield

P =) (B&?s)

-V;‘ N §31(§‘(‘5) - iz J)(.k‘ﬁ;‘) z (7’5)
{ Je(G) Kk T (k0 )

which is the radial impedance of the fluid at the wall. Equating this

to Equation (7.3) gives the characteristic equation

o 28 (p42) (7.6)
%J.(@;@s Qﬁ:cm = Rhe¥ & /ot
® 1R
{ 354(@‘(‘0\ B E 3@&“0\1
which, along with the equations
KA 2 2 32.
'/:k'l'-sa-}:@-i‘ Z2 (7.7)
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completely relate the eigenvalues. For the case of a rigid wall, which
was discussed previously, the eigenvalues were found to depend only upon
two dimensionless parameters; the radial damping number and the radial
frequency number. For the case now being considered, the eigenvalues
are found to also depend upon the tube wall parameters, as might have
been expected.

Equations (7.6) and (7.7) have been solved to obtain ¥ for the
zeroth and first modes. This was done for one set of the tube wall
parameters and the results are displayed in Figures 7.1, 7.2, 7.3, and
7.4 in comparison with the rigid wall results. The calculations were
performed with the aid of an IBM 7040 by a procedure similar to that
outlined in Appendix A. Examination of the graphical results reveals
the following:

1. For the zeroth mode, the spatial attenuation is increased

due to the flexible wall as opposed to a rigid wall. The

increase is so great in the higher frequency regions that

one can consider the flexible conduit to act as a low-pass
filter. The cutoff frequency corresponds approximately to
the natural frequency of the tube wall.

2. Also for the zeroth mode, the elastic flexible wall is seen

to decrease the phase velocity with the minimum value
occurring neér the natural frequency of the tube wall.

Statements (1) and (2) above appear to be generally valid regard-
less of the fluid and tube wall parameters. Examination of Figures 7.3
and 7.4 show that, while there is a considerable effect of the elastic

wall upon the first mode spatial attenuation and phase velocity, no
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general statements can be made regarding the effects as was true for the

zeroth mode.

Elastic Stiff Walls

The approximate equations of motion for a thin-walled elastic stiff

pipe as given by Lin and Morgan (29, 36) are, neglecting rotary inertia

effects

%% . hE §9°% 2 a_"_p}
feh o€ (1= {3%”‘ HRA-E

AR 5+ hEe {Sc , A 25 i
fuh '5% ) Keh%{ﬁ‘gg (1—7:2)5( Hsert Rl ’”"°>

and

Etlk 3°¢
1n30-2) 322 +Keh

QS\* f%-_-o

where the tube wall axial and radial particle displacements are given by

the perturbation equations

S2a(02,0) = Salze) + (6-0) Elze)

and

Stz )= Selzb).

For these equations, the following definitions hold:

A = Poisson's ratio

il

tube wall thickness

]

shear constant (29, 36)

i

h
K
G

modulus of rigidity.
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These equations of motion were used by Lin and Morgan to study the
propagation of disturbances in non-viscous liquids. Using these equa-
tions to find the wall impedance, the characteristic equation for propa-
gation in a viscous liquid will now be derived. To the best knowledge
of the writer, this represents the first such discussion of the propaga-
tion in a compressible, viscous liquid contained within an elastic-stiff

conduit.

Transforming the equations of tube motion and assuming solutions of

the form

o>
LY

[
oM
LY
°

(0

where A indicates transformed quantities, yields, after eliminating bzo

and EO,
&‘o a's(s,"/é)= a.z P{: /e'/“:Z
“ 2 X?@
05,4 = 3 A e
315, (I?)(ia?lé)+“ ($%ep + 1)

a = Pehe
17 K&

On= _________.i — k/Q*(o
and ’ 2&%‘692

L= _EBt
P (1)

-
1§
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Solving for the radial tube impedance gives

S SQq

It should be recognized that Equation (7.8) is the counterpart of (7.3)
.which was the tube wall impedance equation for the case of elastic
flexible walls.’ Proceeding in the same manner as previously doéne,. .
that is, setting the tube wall impedance equal to the fluid impédance
of the. wall yields the equation

('/3(32)(90,&1 S) _ (13(5,'/) . (7.9)

ﬁﬁmgm _ v J‘«(kM% T eda
Jo(BG) Kk To(kn)

Equations (7.7) and (7.9) now completely describe the eigenvalues for
an elastic-stiff viscous fluid carrying conduit.

From this point, the calculations of the eigenvalues for various
types of walls must be done with the computer in a manner similar to
that employed earlier in this chapter. The eigenvalues have not been

calculated for this case.



CHAPTER VIII
DEVELOPMENT OF TAPERED-LUMPED MODEL
Introduction

In Chapter IV, a detailed discussion of a fluld conduit model based
upon the zeroth mode transfer equations was given. In Chapter V, the
validity of this model was experimentally established. It must be said,
however, that despite its validity and accuracy, the model is mathe-
matically unwieldy when used to solve everyday engineering problems in
the time domain. As an example, see Appendix B which describes the in-
verse transformation for the water hammer problem discussed in Chapter
IV. A considerable amount of time and work was needed to solve this
very simple case involving a single line. Practical everyday engineer-
ing problems may involve many lines interconnected with valves, accumu-
lators, etc. The frequency analysis of such a system can be handled
with the aid of a digital computer, but a time domain analysis would be
almost impossible. The need should be evident, therefore, for a simpli-
fied or approximate engineering model which would be useful in the time
domain analysis of complex fluid systems. The approach taken here is to
expand the hyperbolic functions, cosh T(S) and sinh I'($) which appear in
the zeroth mode transfer equations, as infinite producté“of second order
polynomial terms. This method is not new, having been reported most

recently by Oldenberger and Goodson (12), but the approach taken here
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results in a set of tables or curves from which the engineer can obtain

the proper coefficients to be used in the polynomial terms.
Development of Model

Recall that the condult transfer equations may be written in the

form

E(s) = P(s) cosh [6s) - Zes) ’\—/'.(s) sewh M)

and

Vats) = V&) coshle) - E(_s_) sevh ) .
Vi(s)

For the solution of problems requiring a time domain analysis, inverse
transformations involving the above equations are extremely time con-
suming. It becomes, therefore, desirable to develop valid engineering
approximations to these equations if possible.

Consider the possibility of expressing the hyperbolic operator

functions in the infinite product forms.

coshle) = T {i + 28enS fuent s“/wg;,% (8.1)
n=0o
and
sohl)= Ty T 41+ 2 §ghg/wsh+ s‘z/wsz% . (8.2)
w=j

The values of the constants § ) C , W _and w__ are to be obtalned by
cn’ S>sn? ¢ sn

n
solving for the values of Sn at the zeroes of cosh T(s) and sinh I'(S).

¥ and w, may then be found by noting that

Sn= - Lot 1- 8% wa. (8.3)
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Figures 8.1, 8.2, 8.3, and 8.4 display plots of Cond Copr Fopr 204 T

versus axial damping number. To use these plots, it is necessary only

to calculate the dimensionless damping number for a line

Dva= 2L (8.4)
Lo o

and then read off the corresponding values for §n and Fn. W, is then

given by

wv“:: F;A-Lo . (805)

In the above equations

v = fluid viscosity

L = conduit length

R = Igentropic speed of sound in fluid
T, = inside conduit radius.

Having now developed this approximate engineering model, its

validity and limitations remain to be determined.
Comparison of Exact and Approximate Models

Since the engineering model which has just been developed is an
approximation of the "exact' model or zeroth mode transfer equations,
the measure of its accuracy can be easily determined by directly com-—
paring the two models. This may be done by studying the frequency and
transient responses for the two cases. Consider then the approximations

of Equations (8.1) and (8.2) or

coshley = T A4+ 2 5%nS /e S’/wc&E

w=0
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and
sinh Te) = (”%)“Trg Lt 2 8en S/psnt 57&:53} y

Here T(s) is being approximated by SL/bo in the sinh I(s) equation.
Figures 8.5 and 8.6 display plots of the amplitude and phase of

cosh I(s) versus frequency number for two typical values of damping
number. Also shown are the corresponding one-term approximations.
Figure 8.7 and 8.8 show similar comparisons for two terms of the
approximate model. The corresponding comparisons for sinh I(s) were
not plotted since the results are much the same.

From the results of the frequency response comparison of the exact
and approximate models, it may be concluded that the use of a one-term
approximation gives excellent results up to somewhat beyond the first
critical frequency. The use of two terms of the approximation improves
the result up to just beyond the first critical frequency, but does not
predict well the values around the second critical frequency. The use
of more terms would improve the result around the second critical fre-
quency. It now remains to compare the exact and approximate models from
a transient response standpoint.

As an example, consider the water hammer problem which was analyt-
ically studied by use of the zeroth mode transfer equations in Chaptef»
IV and which was experimentally studied as described in Chapter V.
Figure 5.4 shows the physical layout of the model. The Laplace domain
response for the pressure at the valve due to a VO amplifude step change

in the velocity is found from Equation (4.22), or
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The evaluation of the exact inverse of this equation, as discussed in
Appendix B, was cumbersome and impractical for most cases. Therefore,
the n = O terms of the approximate model will now be used to predict the
same pressure transients due to the sudden valve closure. Using the
valve of the damping number for the line which was studied experimen-

tally, i.e., Dn = .02, it may be seen from Figures 8.1 and 8.2 that

gCo - 0.0 BB

F—c°= 1.5‘
Since c, = LhoO ft/sec and L = 100 ft for this case

Weo = (1.5)(HY) = blbvad /e ,

The response equation now becomes

P _ (1> 1
?oﬁo% W [i_l_ D.l?bS/("p.'. sz/(uﬂ)zj

The inversion of the above equation may be easily accomplished and

yilelds

gt

Pe) 1o e T i (bit).

B LoV

This approximate solution is shown plotted in Figure 8.9 in comparison -
with the exact results given previously in Chapter IV. The approximate
model appears to match well the exact result from a frequency standpoint
and also in regard to the attenuation of the fundamental. frequency com=-
ponent. For many typical engineering calculations, results such as this
would be welcome considering the difficulties encountered in obtaining

exact answers.
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Application of Model in Problem Solution

In this section, use will be made of the approximate model in the
solution of two typical problems. In this way, its utility can be

demonstrated.

Example Problem 1

Consider the fluid system illustrated in Figure 8.10. Water is
initially flowing from one reservoir through the line and valve into
another reservoir. The valve is then closed in such a manner that the
valve area versus time history is as shown in Table IV. The problem is
to determine the corresponding pressure history upstream of the valve.

The Laplace domain response equation for the pressure upstream of
the valve in terms of the corresponding fluid velocity is the same as

for the water hammer problem of Chapter IV. This response equation is

Pey= -Z.(= %m), INe) Vis),

Utilizing one term of the approximate model yields

(1+ 2€0s /w0 + Sz/wcg') Re) = - @A) (%) V). (8.6)

For the‘problem here being consldered, this response equation can best
be solved in the time domain since the valve area history is a compliQﬂ
cated polynomial in time. Expressing Equation (8.6) in the time domain

yields (including a linear flow resistance term, Riq(t))

(4+ 280D /useo + D/est ) Plt)=-0L Dgw- Rigw), 87
A



129

PRESSURE

; ATRANSDUCER~—-‘\\\\\\\‘
PRESSURIZED : i

RESERVOIR
FLUK{//:>
LINE

UNITS: INCHES, POUNDS, SECONDS, RADIANS

Pipe Dimensions «

B D e DOWNSTREAM
Lengih 276.0" RESERVOIR
Wall Thickness 0.0625" . '

Youngs Modulus of Elasticity 12 x 106

Adiabatic Modulus of Elasticity of Fluid 32 x 10%
Atmospheric Pressure 8.7 (Static pressure maintained below

valve during closure, psia).
Famming Friction Factor 0.012

Initial Static Pressure at Valve 21,42 psia
Fluid Density at Valve 0.036995

Figure 8.10. Schematic of Physical Layout for Example Problem 1

TABLE IV
VALVE AREA DATA FOR EXAMPLE PROBLEM 1

Effective Flow Area of Valve vs Time

Time Area

0.000 8.34

0.010 8.30

0.030 7.49 aw) = Al-2 A'fz
0.050 6.36 p(1- Az )
0.078 4.74

0.110 3.47

0.142 2.39

0.175 1.57

0.205 .84

0.236 .35

0.261 .00

9th degree equation of above points
Area = 36,098,169T%-27,651,150T° + 5,290,046T7

+662,432T0 -210,542T° -41,747T4 + 16,928T3 -1,707T2 +9.226T +8.347
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Here, q(t) is the flow rate at the valve.

Solution of Equation (8.7) has been carried out on the digital
computer and the results are plotted in Figure 8.11. Also shown in this
figure are results of an experiment carried out at the Marshall Space
Flight Center, Huntsville, Alabama. The analytical predictions agree
well with the experimental results in the early stages of valve closure
but deviate considerably in the later stages. This deviation is be-
lieved to be principally due to error in the analytical expression for
the valve area compared with the actual valve area which occurred during

the experiment.

Example Problem 2

For this example consider the simple hydraulic system shown in
Figure 8.12, It is assumed that the dynamics of the valve and load are

described by the three equations

wm 4% 4 b dx < - (8.8)
ht A{+\$x Kyw) - A

%I'_‘ C A’PZ (8.9)
and

‘Pz_ = ZL G- (8.10)

The constants of the system are given below.

0.000Q-’b-—secz/in

m =
b = 0.01 |b-sec/in

x = 50 |b./in

A = 0.2 in?

C = 0.00126 inl‘/ b ~sec
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Zl = 43, “3 --sec/:‘.n5
_ X 'b 2 - L!‘
P, = 0.0000812 -sec” /in.
Ap = 500 psi
L = 10 ft-
r = 0.2 in
o
v = 10"4 ftg/sec
c, = L4500 ft/sec.

A frequency analysis of the valve will be made by first neglecting
line effects and next by including a one~term approximation of the line.
Considering first no line effects, the Laplace domain equation describ-

ing the displacement of the valve in terms of the input Y is

Xs) = K Yes) . (8.11)
[ mazs bs+ (ks cze o))

A plot of the amplitude and phase of X(iw)/Y(iw) is shown in Figure
8.13.

It is desired now to include the line effects by modeling it with
one term of the approximate model. First calculating the line axial
damping number to allow the use of Figures 8.1 and 8.2 for finding the

line parameters §co and We, gives

Drz= oL = QX‘VID_Q,
Lo Yo©

Thus,

coshls) z{ﬂ- 205/ toe, + sywc'éz

swhle) = sl /o
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with
Seo= 0.05, cwep = 363,0,

This leads to

Q= Qo cosh+ B geuhl

[N

~ . 80
VB{H 2%08 _s_;}+_¥7_2(§_¢__> (8.12)
Ze Weo bied Z.\ Lo

and

P= R oshTy Ze ©4 scwhl

{14- 2805 8%, Ze (i’:ﬁ Pa. (8.13)

Wep eg 'Z L Ao

Combining Equation (8.8), (8.9), (8.10), (8.12), and (8.13) gives a re~

sponse relation for X(s) in terms of Y(s) or

Xts) = KYee) (8.14)
[ms?+ bs + k+ cApGes)]

where

52 Ze (SL
GE) = [i+ “’” P et 2(79-)]
g2 1 /se
[ * COcn 4- 2&;?] + 2?;.<;£:>

The amplitude and phase of X(iw)/Y(iw) from Equation (8.14) is plotted

(8.15)

in Figure 8.13% in comparison with the results of Equation (8.11) which
was for no line effects. There is a dramatic difference between the

results of neglecting and including line effects. The simplicity of
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using the approximate line model in this analysis is also apparent.
Discussion

In this chapter, an approximate engineering model of a fluid con-
duit, based upon infinite product expansions of the cosh T'(s) and
sinh I(s) operators in terms of second-order polynomials, has been
presented. The basic idea for this development was obtained from a
paper by Oldenberger and Goodson (12). The writer has, however, ex-
tended the method to the extent that it is now possible to obtain the
necessary polynomial coefficients from the curves presented herein.
Thus, the method might now be considered a handbook engineering method.
The validity of the method was examined by comparing it with "exact"
model results from Chapter IV and also by demonstrating its ability to
predict experimental results. The results of this examination may be
summarized as follows:

1. One term of the model well approximates the hyperbolic

operators up to the first critical frequency.

2. Two terms improve the approximation up to the first
eritical point and roughly (not well) approximate the
hyperbolic operators up beyond the second critical fre-
quencys The use of more terms would improve the results
near the second critical frequency.

3. The use of one term of the model gave good results in
predicting the transient response representative of water
hammer.

L, The model was of good utility in solving two example prob-

lems, one which had supporting experimental data.



CHAPTER IV

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

Summary

The problem of modeling a fluid transmission line has been treated
in varying degrees of exactness.

An exact solution of the first-order Navier-Stokes equation for a
compressible liquid was obtained and found to demonstrate the existence
of an infinite set of viscous modes of propagation. The zeroth mode was
found to be predominate, with the higher modes being generated near
boundaries. The extent of propagation for the higher modes depended
upon the frequency since these modes had relative cutoff frequencies
below which there was considerable attenuation, Through the use of a
flow visualization method, the action of the higher modes near an oscil-
lating piston was experimentally observed.

A conduit model based upon a cross-sectional average of the zeroth
mode only was derived in terms of a set of transfer type equations com-
monly found in the literature. Experimental investigation of these
equations proved their validity over a wide range of parameters, thus
qualifying this as a useful engineering model.

A third model, based upon rational approximations of the zeroth
mode transfer equation model was derived and the parameters were ob-

tained and recorded. This model was demonstrated to have usefulness
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where it is desired to study complex fluid systems and where the mathe-
matics involved in using the more sophisticated models would prove
unwieldy.

An analytical investigation into the effects of nonrigid walls was
undertaken and demonstrated the dramatic and not-to-be-neglected effect
which these walls can have. Calculations were made to determine the
effect of an elastic flexible wall upon the wave phase velocity‘and
spatial attenuation as opposed to a rigid wall. For the case presented,
it was found that the spatial attenuation was increased by approximately
a thousandfold and the phase velocity decreased by approximately 75 per

cent in certain frequency ranges.
Conclusions

The conclusions which have been reached as a result of this study
are:

1. In general, the first-order (acoustic) disturbances in a
viscous fluid transmission line consist of an infinite
number of modes of viscous propagation. The excitation
of each mode results from the necessity of satisfying
boundary conditions. The extent of spatial propagation
of each mode depends upon the frequency.

2. The conduit model based upon a cross-sectional average of
the zeroth mode only is valid at least for the range of

damping numbers and frequency numbers
0.0000< D__< 0.02
nz

0.5 < Fnz< 10.0.




The conduit model based upon rational approximations
of the zeroth mode transfer equatioﬁ model is useful
for studying the dynamic response of complex fluild
systems.

Wall elasticity effects should be considered when
modeling fluid tranmission lines with increases in
the spatial attenuation of thevorder of 1000 and de-
creases in the phase velocity of the order of 75 per ‘

cent demonstrated for one case in this treatise.

Recommendations for Future Study

Areas which it is felt are worthy of future study include:

1.

2.

Investigation of the effect of a net flow upon dis-
turbance propagation. This investigation should
include laminar and turbulent flow.

Investigate further the effects of nonrigid walls

upon viscous propagation.

Look into the effect of discontinuities and non-uniform
cross-sectional area upoﬁ viscous propagation in a

fluid conduit.
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CALCULATION OF EIGENVALUES

The purpose of this Appendix is to demonstrate the calculation
procedure used to obtain the eigenvalues from the characteristic
equations.

Consider Equations (3.32) and (4.3), or

"k, S _pry__S% (2.1)

hekes 5 = o +,€o"+%vs |
and

K, @“  (BnGe) _ ,/Z T (kn%s) (A.2)

EATR A " Tkt

which are the characteristic equations for the eigenvalues of a rigid
fluid conduit. In order that the calculations can be based upon dimen-

sionless numbers, define

G =Yr

n no
Bn = ?nro
k =k r

n n o
FN = sro/'co
and

DN = v/boro

where each is dimensionless.
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Equations (A.1) and (A.2) now become

z

Gw=RI+FN=Bn + __FN (A.3)
1+ <£(FM(DN)
and
Kw B (B _ g Tk . (A1)

Jo (Bn) Jo(kn)

The actual calculation here must be a numerical trial and error proce-

dure. Hence, define

E-= Kv\Bn J——‘-ﬁ——B"D - G‘nz _“_ELK“) (4.5
Jo(Bn) RINED)

and start the calculation by assuming a value for Bn' This is then used
to calculate K and G from Equation (A.3). Knowing B , G , and K, (for
a given value of F and D) we can calculate E. In order to know how to

adjust Bn’ calculate dE/dBn and adjust Bn from the equation

E
Bri= Bro- degp,

where Bnl represents the new value and BnO the previous value. A list-
ing of the computer program used to perform these calculations is given
on the following page. The data read in ares:

DN = damping number

i

FNO

i

initial value of frequency number
DFN = increment in frequency number
FM = maximum value of frequency number
BOX = starting value of Real (Bn)

BOY = starting value of Imaginary (Bn).
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12

CALCULATION OF HIGHER MODE EIGENVALUES
COMPLEX BsFsCKsCK2sRIBIRIKICT1sCT24E
COMPLEX T1sT2sT3sT4sT5:DB9G2+6
FORMAT(7F10,8)

FORMAT(7F11,8)
FORMAT(2XsF11+852E156892Xs2E1548)
READ(5520)DNsFNOsDFNsFNM1sBOX »BOY s ER
WRITE(6521)DNsFNOsDFN»FNMsBOX s BOYSsER
B=CMPLX (BOX sBOY)

FN=FNO

F=CMPLX(0ssFN)

CK2=B*#2+F**2-F/DN

CK=CSQART{CK2)

IF (AIMAG(CK2)) 30444
CK=-CK

CALL JOORJ1(CKRJIK)

CALL JOORJ1(BsRJB)
G2=B*X2+F #%2
CT1=CK*B*RJB
CT2=G2*RJIK

E=CT1-CT2
R1=CABS(E)/CABSICT1)

IF(R1-ER)636+5
T1=RJB¥* (B¥¥2/CK+CK)
T2=B*CK*((14906)-RJIB/B+RIB¥¥2)
T3=22, *B*¥RJK
T4=(B/CKI%#G2%( (1es00)~RIK/CK+RIK¥%2)
T5=T1+T2-T3-T4
DB=-E/T5
B=B+DB
GO TO 7
G=CSQRT(G2)

IF(AIMAG(G2) 183999

==G
GX=REAL(G)

GY=AIMAGI(G)

CCO=FN/GY
WRITE(6+22)1FNsGXsCCOsB
FN=FN+DFN

IF(FN-FNM) 10510511
GO TO 1
STOP .

END
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. 100

101

110
111

112
113

120

121

122

116

114
115

117
119

SUBROUTINE JOORJ1(ZsRJ)
CALCULATION OF J0Z AND J12Z

147

COMPLEX 29J15JOsTERMOsTERM1+Z19225P0sQ0sP19Q1sPHOsPHLsFZ1eF22sRJ

X=REAL(Z)

Y=ATMAGIZ)

R=CABS{2)
IF(R-18+1100+160+110

“TERM1=2/2,

J1=2/2.

JO=(1e90s)

TERMO=(1e90,)

A=zlse

AM=T ¢ +P,
TERMO=TERMO#(~(Z/24)%%#2) /A%N%2
JO=JO+TERMO
TERMI=TERMLI®¥(={2/24)1%%2)/((A+10 ) %A)
J1=J1+TERM1

A=A+l

IF(A-AM) 10151010115
IF(X)Y11191129112

21=-2

GO TO 113

21=2

P1=3,1415926

22=8e%71
1IF(CABS(22)-50004)1200120+121
PO=(16906)—4e5/22%%2+36754/(Be®*22%%4)
Q0=-1e/22+437e5/22%%3~-595354/(Be*#22%%5)
P12(1e90e)+T70e5/22%%2-4T254/(Ba®Z2%%4)
Q1736/22-5245/22%%3+6615./(Be%Z22%%5)
GO TO 122 :

PO={1e90e)—405/22%%2

Q0=-14/22

P1=(1e30e)+765/22%%2

Ql=34/22

PHO=21~P1 /4,

PH1=Z1~475%P1

F21=2e/P1%21

FZ2=CSQRT(FZ1)

A21=AIMAG(Z1)
IF(ABS(AZ1)-50e111691165117
JO=FZ2%#(POXCCOS(PHO)~QOXCSIN(PHO))
J1=F22%#(P1¥CCOS(PH1)}-Q1#CSIN(PH1))
IF{X)114+1155115

Ji=-J1

RJ=J1/40

GO TO 119
RJ=({0e91le)#P1+QLl)/(PO=(0esle)*Q0)
RETURN

END
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INVERSE LAPLACE TRANSFORMATION FOR

VISCOUS WATER HAMMER PROBLEM

In this Appendix, the method employed in the calculation of the
pressure history for the viscous water hammer problem, as presented in
Chapter IV, will be given.

It has been shown (Chapter IV) that the transformed pressure re-

sponse output to a transformed velocity input is

PE)= -Z.(s) Vis) tawh ) (B.1)
where
sbL
D)= —— |
o= [Fe)] 2
RS Lo «Co'
[Fe] "™
Q_uj}(kXb)
F&) = 1- 155,
and

K=z\l—§ ,

Putting V(s) = —Vo/s, which represents the transformed input due to

sudden valve closure; Vo being the initial fluid velocity before
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closure, gives

Ps)= 'V, —Ziscé—) tavhMes) (B.2)

The inverse transformation of Equation (B.2) may be written as

P4) = V (5 swh PCS)) es'(: (B.Bj
cosh M¢s) ’

Res:dues

This summation will now be evaluated.

For convenience, Equation (B.3) may be written in the form

_PE) sinh es) et

VOJC*’Q s [F=] ™ cosh )
Resedves

(B.14)

The poles which contribute residues to the above summation are given by

coshs)= ©

or

Cany = *i (Mo + v.‘rr)

The corresponding residues are given by

Rﬁ{‘?w“ re) e %
s[Fe" d cosh Vs ) g,

i

esw‘:
{5 [Fe]"™ P'(53§ s=Sn .

A listing of the computer program written to calculate and sum these

residues is given on the following page.
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VISCOUS WATER HAMMER PROBLEM
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COMPLEX F(100)9sT1sT2sT3sT4(100)sFC(100)19T1CsT2C»T3CoT4HC(100) 9SUM

COMPLEX FNsFKNROsFFoDIF1sFN19sE2sE39FNNsE4sRY
FORMAT(I15+5F1067)
FORMAT(T7XsF15689E158+E15,8)
READ(592)NMsDNsDT»sTMsGoTO
WRITE(6+2)NMesDNsDT»TMsG»TO

DO 7 N=19sNM

P1=341415926

A=N-1

Plel{A+e5)%P]

£1=,0001

FNN=CMPLX{E1sP1)

FN=FNN

E2=~-FN/DN

FKNRO=CSQRT (E2}
IF(AIMAG(E2)1)113s14,414
FKNRO=~FKNRO

CALL JOORJ1(FKNROsRJ)
FF=(1e904)-2+#RJ/FKNRO
ZERO=0,

E3=CMPLX(ZEROsP1)
E4=CSQRT(FF)
IF(AIMAG(FF))15516416
E4=-E4

FN1=E3*E4
DIF1=(FN1-FN)/FN1
DIF2=(CABS(FN1)—-CABS(FN))/CABS(FNI1}
IF{DIF2-G)6s645

FN=FN1

GO TO 4

F(N)=FN1
Ti=F{N)®#%2/ [ (A++5)%P])*%2
T2=F(N)/(DN#*T1)
T3=e5+T2%(1,+T1)%%2/8,
T&IN)Y=F(N)%®(14+T3)
FC(N)=CONJG(F(N}}
TIC=FCINI®#%2/( (A+,5)%#P1)%%2
T2C=FCIN)/(DN*T1C)
T3C=e5+T2C*(1e+T1C)%%2/8,
T4CINI=FCIN)I*#{1e+T3C)
T=T0

SUM=(0¢904)

DO 10 N=1sNM
SUM=SUM+CEXPIFIN)%#T) /T4 (N)+CEXP(FCIN)*T) /T4C(N)
WRITE(6911)TsSUM

T=T+DT :
IF(T-TM)Bs8B512

GO T0 1

sTOP
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W N

90

‘91
92

93
94

- N

90

91
92

93
94

CALCULATION OF zC
COMPLEX CFNsG2sFKNROyFF9G44ZsRJ
FORMAT(4F1548)
FORMAT(1F15:8)
FORMATI(2X91F 156434XsE154832X3E1548)
READ(5+2)DNsFNOsDFNyFNM
WRITE(6+3)DN

FN=FNO

PI=3,1415926
CFN=CMPLX{OessFN)
G2=~-CFN/DN
FKNRO=CSQRT (G2)
IFLAIMAG(G2)191+92,+92
FKNRO=-FKNRO

CALL JOORJL(FKNROsRU)
FF=(les0e)=24%RJI/FKNRO
G4=CSQRT(FF)
IF(AIMAG(FF))93994+94
Ga=~Gh4

2=1le /G4

2X=REAL(2Z)

ZY=AIMAG(Z)

AZ=CABS(Z)
PHZ=ATANZ2(ZXs2Y)
PHZD=(180e/301415926) #PHZ
WRITE(634)FNsAZSPHZD
FN=FN+DFN
IF{FN-FNM)90s90+8

GO T0 1

STOP

END

CALCULATION OF GAMMA
COMPLEX CFNsG2sFKNROsFFsG49GAMASRI
FORMAT(4F1548)
FOI'MAT(1F15.8)
FORMAT(2Xs1F150494X9E154892X9E1568)
READ(552)DNsFNOsDFNsFNM
WRITE(693)DN
FN=FNO
P1=3,1415926
CFN=CMPLX (0w sFN)
G2=-CFN/DN
FKNRO=CSQRT(G2)
IF(ATMAG(G2)191+92,92
FKNRO=-~FKNRO
CALL JOORJL(FKNRQOsRJ)
FF=(1le3006)—2¢*¥RJ/FKNRO
Gua=CSQRT(FF)
IF(AIMAGIFF))93+94,4594
G4=-G4
GAMA=CFN/G4
GX=REAL (GAMA]
GY=AIMAG{GAMA)
CCO=FN/GY
WRITE(694)FNsGXsCCO
FN=FN+DFN
IF(FN=FNM)S0+90,+8
GO TO 1
STOP
END
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n

- W N

90

- 91
92

93
94

10
11

@

= WwN

13

— 0~

FREQUENTY RESPONSE OF LINE WITH CONST. PRESSe. TERMINATION
COMPLEX CFNsG2sFKNRQoFF G4 sGAMARI +COSHG» STNHG POV
FORMAT(4F1548)
FORMAT(///315Xs1F1584//)
FORMAT(1F1542+5X91E1548+5X3s1E1548)
READ(552)DNsFNOsDFNsFNM
WRITE(693)DN
FN=FNO
PI=341415926
CFN=CMPLX{0ssFN}
G2=~CFN/DN
FKNRO=CSQRT(G2)
IF(AIMAG(G2))91592+92
FKNRO=-FKNRO
CALL JOORJLI({FKNRO»RJ)
FF={(les0e)—2e*RJI/FKNRO
G4=CSQRT(FF)
IF(AIMAGIFF))93,+94,94
G4=~G4
GAMA=CFN/G4
COSHG=(CEXP (GAMA)Y+CEXP(~-GAMA) ) /2.
SINHG=(CEXP (GAMA) -=CEXP (—~GAMA)) /2.
POV=GAMA*SINHG/ ( CFN#COSHG)
RPY=CABS(POV)
RPVDB=20e#ALOGLO(RPV)
PVX=REAL{POV)
PVY=AIMAG(POV)
PHPV=ATAN(PVY/PVX)
IF(PVX)697s7
PHPV=PHPV+PI
PHPVD=PHPV#1804/P1
WRITE(654)FNIRPVDBPHPVD
FN=FN+DFN
IF{FN-FNM)903s90,10
GO TO 1
STOP
END

CALCULATION OF ZEROES OF SINHG
COMPLEX FNsFKNROSFFsDIFloFNL1sE24E3sFNNsE4sRI
FORMAT({F15e891154F1548)
FORMAT{2Xs1F1548)
FORMAT(T7Xs3F1545)

READ (552)DNsNMsG
WRITE(693)DN

DO 7 N=1sNM
P1=341415926

T=N

Pl=T%p]

£1=40001
FNN=CMPLX(E1sP1)
FN=FNN

E2=-FN/DN
FKILRO=CSQRT(EZ2)
IF(AIMAGIEZ2)) 13514014
FKNRO==FKNRO

GU T0 4
FNX1=REAL{FN1)
FNY1=AIMAG(FNI)
D=1le+{{FNYL1/FNX1)%¥%2)
ZETA=SQGRT(1e/D)
FUD=-FNX1/ZETA
ALPHA=FNX1

FND=FNY1
WRITE(6s8)DNsZETASFUD
GO TO0 1

STOP

END
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11
12

155

ELASTIC WALL FLEXIBLE
COMPLEX BsFsCKsCK2sRIBIRJKICTL1sCT2HE
COMPLEX T19T2sT3sT4sT5+T6sTT79sDBsG29GHEE
FORMAT(7F10e892F542)
FORMAT(7F11eB92F6e3)
FORMAT(2XsF11e83s2E15e¢892X92E1508)
READ(5920)DNsFNOsDFNsFNMsBOX9BOYSERIP1sP2

" WRITE(6921)DNsFNOsDFNsFNMsBOX+BOYSERsSPLsP2

B=CMPLX (BOX sBOY)
FN=FNO
F=CMPLX(0OesFN)
CK2=B#*2+F##2~F /DN
CK=CSQRT(CK2)
IF(AIMAG(CK2))324+4
CK=-CK .
CALL JOORJ1 (CK yRJIK)
CALL JOORJL(BsRJUB)
G2=B*%2+F %2
CT1=CK*B*RJB
CT2=G2*RJK
E=CT1-CT2
T6=(P1%(F#%2))+P2
EE=E~(CK*(F#%2))/T6

"R1=CABS(EE)/CABS(E)

IF(R1-ER)69695

T1=RJUB* (B*%2/CK+CK)
T2=B*CK*((1les0e¢)—~RJIB/B+RIB*%2)
T3=2,%¥B*RJUK

T4z (B/CK)*G2%((les0e ) =RIK/CK+RIKH#%2)

S T5=T1+T2~T3~T4

T7=T5-(B*(F*%2))/(CK*T6)
DB==-EE/T7

B=B+DB

Go TO0 7

G=CSQRT(G2)
IF(AIMAG(G2))8+949
G==-G

GX=REAL (G)

GY=AIMAGI(G)

CCO=FN/GY
WRITE(6922)FNsGXsCCOsB
FN=FN+DFN
IF(FN-FNM)10+10,511

GO TO0 1

STOP

END



an(r)

LIST OF SYMBOLS

Constant at integration
Conduit cross-sectional area

Constant of integration

Phase velocity

Isentropic speed of sound in fluid

Specific heat, constant volume

Conduit capacitance based on flow rate
Conduit capacitance based on velocity

Conduit capacitance based on weight flow rate

Conduit diameter
Substantial derivative

Conduit inside diameter
Conduit outside diameter

Radial damping number, v/roc0

Axial damping number, \)L/coro2

Vector body force per unit mass

Axial frequency number for nth zero of cosh I
Radial frequency number, ® ro/cO

Axial frequency number, L/cO

Axial frequency number for nth zero of sinh T
Axial velocity profile function for the nth mode

Tube wall factor, defined by Equation (2.35)



Acceleration due to gravity

Imaginary unit,lJ -1

Electrical current at point j

Fluid inertance based on flow rate

Fluid inertance based on velocity

Fluid inertance based on weight flow rate
Bessel function of order zero and argument x
Bessel function of order one and argument x
Eigenvalue defined in Equation (3.24)
Eigenvalue for nth mode

Conduit length

Electrically equivalent inductance

Index number

Fluid pressure

Zeroth order fluid pressure

First order fluid pressure

Transformed pressure

Transformed pressure at point j

‘Average transformed pressure at point j

Fluid flow rate

Vector heat flow rate

Radial coordinate positiom

Unit wvector in radial direction
Conduit inner radius

Resistance coefficient, Equation (2.9)
Laplace variable

Time



Temperature

Vector f£luid velocity

Zeroth order vector fluid velocity

First order vector fluid velocity

First order transformed radial wvelocity

First order transformed axial velocity

First order transformed axial velocity for the nth mode
Average transformed axial velocity at position j
Axial coordinate

Characteristic impedance

Average impedance at position j

Eigenvalue defined in Equation (3.25)

Eigenvalue for nth mode

Eigenvalue defined in Equations (3.24) and (3.25)
Eigenvalue for nth mode

Real part of

Imaginary part of

Propagation operator, L

Real part of T

Imaginary part of T

Damping ratio for nth zero of cosh T

Damping ratio for nth zero of sinh T

Unit vector in © direction

Bulk modulus of elasticity of fluid

Absolute shear viscosity

Absolute dilitational viscosity

Absolute bulk viscosity



kinematic -shear viscosity
Fluid mass density
Zeroth order demnsity-
First order density

Tube wall density

Scalar field

Transformed scalar field

‘Dissipation function

Magnitude of vector field @
Vector field
Angular frequency

Vector operator del



